Shedding Light on T2-Low Asthma: A Forgotten Frontier in Asthma Research


Welcome to the World Asthma Foundation blog, where we strive to inform and inspire our readers in support of our mission. Today, we turn our attention to a lesser-known aspect of asthma called T2-Low asthma. While much focus has been placed on T2-High asthma, which includes allergic and non-allergic inflammation, T2-Low asthma has remained in the shadows. This subtype encompasses various forms, such as paucigranulocytic asthma, Type 1 and Type-17 inflammation, and the neutrophilic form, which is particularly common in severe or refractory cases. By exploring the realm of T2-Low asthma, we hope to raise awareness, ignite discussion, and rally the asthma community towards much-needed research and innovation.

Subheading: Unraveling the Complexity of T2-Low Asthma

Understanding T2-Low Asthma:

T2-Low asthma comprises different subtypes, including paucigranulocytic asthma, Type 1 and Type-17 inflammation, and the prevalent neutrophilic form. While T2-Low asthma is generally associated with milder symptoms, it’s important to note that the neutrophilic form can result in severe or refractory cases. By recognizing the complexities of T2-Low asthma, we can gain a deeper understanding of the challenges it poses to patients and researchers alike.

The Need for Research:

Despite its impact on patients, T2-Low asthma has received limited attention in terms of biomarkers and effective treatments. The scarcity of research on T2-Low asthma hinders progress in developing targeted therapies and diagnostic tools. By emphasizing the need for increased research efforts, we can work towards improving the lives of individuals living with T2-Low asthma.

Subheading: Key Takeaways

Key Takeaways:

T2-Low asthma encompasses various subtypes, including paucigranulocytic asthma, Type 1 and Type-17 inflammation, and the neutrophilic form.
While T2-Low asthma is generally associated with milder symptoms, the neutrophilic form can result in severe or refractory cases.
Limited research has been conducted on T2-Low asthma, leading to a lack of biomarkers and effective treatments.
Raising awareness and supporting research on T2-Low asthma is crucial to unlocking innovative solutions and improving outcomes for patients.
The World Asthma Foundation is dedicated to addressing the gaps in T2-Low asthma research and advocating for the needs of affected individuals.

As we conclude our exploration of T2-Low asthma, we invite you to take action and support the cause. T2-Low asthma remains an understudied and overlooked frontier in asthma research, leaving many patients without effective treatments or biomarkers. It is our collective responsibility to raise awareness, push for solutions, improve diagnostics, and ultimately strive for a cure. By joining hands with the World Asthma Foundation, we can make a significant impact on the lives of those affected by T2-Low asthma. Together, we can transform the future of asthma care and provide hope for a brighter tomorrow.

Clean Air for Better Health: World Asthma Day and Indoor Air Quality

As we celebrate World Asthma Day, it is important to acknowledge the risks associated with asthma and the benefits of having clean air. Asthma is a chronic respiratory disease that affects millions of people worldwide. It is a condition that causes the airways in the lungs to become inflamed and narrow, making it difficult to breathe. While outdoor air pollution has been identified as a major risk factor for asthma, the air quality inside our homes and workplaces can also have a significant impact on our health.

To raise awareness about the importance of indoor air quality, the campaign aims to educate people on the simple steps they can take to improve the air quality inside their homes and workplaces. One of the key messages of the campaign is that clean air is essential for good health and well-being.

According to the World Health Organization (WHO), indoor air pollution is responsible for over 4 million premature deaths every year. Indoor air pollution can be caused by a variety of factors, including cooking, cleaning, smoking, and the use of certain household products. To achieve clean indoor air, there are several steps that individuals and households can take.

One of the most important steps is to eliminate sources of indoor air pollution. This can include switching to non-toxic cleaning products, using natural air fresheners, and avoiding smoking indoors. In addition, it is important to ensure that ventilation systems are functioning properly and to regularly clean air filters.

Monitoring indoor air quality is also crucial in identifying sources of pollution and taking steps to eliminate them. This can be done using a variety of devices, including air quality monitors and carbon monoxide detectors. Seeking professional help when necessary, such as hiring a professional to assess indoor air quality or installing an air purification system, is also important.

Air pollution is a major risk factor for asthma, and it can trigger asthma symptoms or exacerbate existing asthma. The most common sources of air pollution include traffic emissions, industrial activities, and burning fossil fuels. But indoor air pollution can also contribute to the problem, as allergens, pet dander, mold, and tobacco smoke can all cause asthma symptoms.

Clean the Air for World Asthma Day is a call-to-action that emphasizes the importance of reducing air pollution for the health of people with asthma and the general population. To Clean the Air for World Asthma Day, we need to take action on multiple fronts. One of the most important steps is to reduce outdoor air pollution, which requires government policies and action from industry to reduce emissions.

Individuals can also take steps to reduce their exposure to air pollution and improve their indoor air quality. This includes reducing the use of products that emit volatile organic compounds (VOCs), using natural cleaning products, and avoiding smoking or exposure to secondhand smoke. Ventilating indoor spaces properly and regularly cleaning air filters can also help improve indoor air quality.

In addition to these actions, individuals can support policies and organizations that promote clean air. This includes advocating for clean energy and transportation policies, supporting asthma research and education, and participating in local community initiatives to reduce air pollution.

In conclusion, clean air is essential for good health and well-being. By taking simple steps to improve indoor air quality and advocating for policies that reduce air pollution, we can reduce the risk of respiratory problems, including asthma, and enhance our overall quality of life. The campaign and Clean the Air for World Asthma Day are both valuable resources for individuals and households seeking to improve indoor air quality and promote good health.

Asthma’s Inner World – a patients journey of discovery

By Alan Gray

World Asthma Foundation (WAF) is supporting care of Asthma and asthmatics around the world through a new Severe Asthma Series focused on “Defeating Asthma” with the aim of shining a spotlight on a deeper understanding and getting to a cure.
I’m Alan Gray, the Director of the World Asthma Foundation (WAF) located in Adelaide, Australia. Today, I’m talking to Bill Cullifer, in Northern California, he’s the founder of the World Asthma Foundation (WAF) and a Severe Asthmatic. I’m hoping to spend some socially distanced time with Bill to get his perspective on why he chose to establish the WAF in 2003 and what he finds important about Severe Asthma. We’ll also cover what he’d like me to accomplish heading up the Severe Asthma project as the Director in Australia.


Bill retired in 2013 from his Web professional career as a result of battling severe respiratory issues. Complicated by anaphylaxis to Aspirin and allergy to Aspergillus, a common and ubiquitous Fungi in the air we breathe every day. Bill has debilitating Severe Asthma. Severe Asthmatics are at high risk for COVID19, so reaching out to Bill today is timely since he’s isolated like many other Asthmatics. As a colleague and friend, Bill has asked me to lend my web publishing experience to share his 17-year personal journey of discovery with Asthmatics everywhere. I’m pleased to be a supporter of the Asthma community and to lend a hand.

Question and Answer session with Bill Cullifer, Severe Asthmatic and Founder WAF

Alan: Good morning Bill and thanks for making yourself available.

Bill: Good morning Alan and thanks for the kind words and the gracious support. Nice to hear from you today.

Alan: Bill, we’ve known each other for over 20 years dating back to your Web professional efforts to educate and certify Web workers around the globe. I appreciate you reaching out to me to support the Severe WAF and the Severe Asthma Series. To that end, I have a few questions for you.

Bill: Ok, great thanks Alan and thanks for your support.

Alan: Why does Severe Asthma matter to you?

Bill: Great question. Severe Asthma is a global health crisis that affects over 300 million people worldwide. Asthma has already reached Pandemic levels by definition standards published by the World Health Organization (WHO). For those that suffer, Severe Asthma can be very debilitating and can cause premature death. I know first hand because Severe Asthma has dogged me personally for the last 17 years. While inhalers can be effective treatment for some, many Severe Asthmatics require daily systemic steroids, expensive treatment options and physical therapy.

Asthma rates are just getting worse. The projected rate for Asthma tops 400 million worldwide in the middle part of this decade. This is unacceptable really. Despite significant advances in our understanding, Severe Asthma continues to wreak havoc on individuals and our global economy. Given the toll on individuals, the burden on society and the huge financial cost, we need an “all hands on deck” to turn this around. Asthma education and advocacy are an integral piece for solving this puzzling disease in my opinion.

Alan: What can we expect from the WAF Severe Asthma series?

Bill: For a number of Severe Asthmatics, getting to a definitive diagnosis, can take years. In fairness, Severe Asthma is a complex disease, it’s confusing and frustrating for clinicians alike as well.

The Severe Asthma Series is about my own personal journey of discovery. A research journey that’s still unfolding actually. With encouragement from family and friends to share my story with others, I’ve turned over my 17 binders of notes, assembled my documents and medical records. I hope others can benefit from my story.

Alan: Any key takeaways?

Bill: For starters, Asthma is way more complicated than experts first realized actually. Also, Asthma is not a single disease but rather a syndrome. That’s major progress because it’s not only descriptive, it’s the truth. I’ve struggled to understand this for decades. We can’t defeat what we don’t understand and I think that unlocking the mystery is part of the Asthma solution I’d say.

Alan: How are you now and how are you holding up with the global COVID19 pandemic?

Bill: Severe Asthmatics are at high risk for COVID19 according to health experts around the globe. Like many in the over 60 crowd with underlying health issues, I’m hunkering down. I’m trusting my own instincts and following health guidelines by avoiding outside contact by staying indoors and hopefully out of harm’s way. Severe Asthma and COVID19 are both as much mystifying as they are isolating. I empathize with Asthmatics everywhere. It’s really a tough and uncertain time. Playing it smart, I think we’ll get through this.

Alan: Why did you establish the World Asthma Foundation (WAF) and what do you hope to accomplish with the Severe Asthma Series?

Bill: Alan, It’s human nature to want to learn more when you or someone close to you is diagnosed with a potential life threatening illness. To help me improve my personal understanding and diagnosis, I created a simple website at in 2003 and registered the WAF on the web. More of a newsfeed really than a website, The goal was to harness and publish daily Asthma news from around the world and to automate the delivery to my email every 24 hours. Community forums were not as robust as they are today. Automation saved me time from manually searching for the daily news. I learn something new about Asthma every day. Way more informational than I ever gleaned from reading the pamphlets at the doctors office. Today, the WAF has evolved to include a lot more than just the news. Over 8k subscribers last I checked. A lot has changed since 2003. Advances in research and technology, along with a number of very passionate researchers is on the rise and its a good thing to be reporting on. Ideally, and if you’re willing, I’m hoping to leverage your web publishing background to provide timely and relevant Asthma information that will benefit those that suffer. Asthma education matters and my hunch is that my findings can go a long way in moving the needle to our collective understanding of Severe Asthma.

Alan: What would you like Asthmatics to know about this series?

Bill: Severe Asthmatics like myself have daily struggles trying to breathe and living to see another day. I’m hopeful that my journey of discovery of the past 17 years will improve the level of understanding for the Asthma community. Asthma for example, is driven by both genetics and environmental factors, We’ve known that for sometime now. But what does that mean exactly? It’s been my mission to unpack this mystery. The genes we inherit are important but what impact does the environment have on our dna? Activation of the immune system has plagued researchers for years and it would also be nice to unpack this mystery as well. To be clear, I’m not a physician, and this should not serve as medical advice. I’m just a regular guy with Severe Asthma that’s trying to figure Severe Asthma out like everyone else. Science is about unlocking the truth and the truth is, together Asthmatics can ultimately prevail in getting the answers to a multitude of questions. Leading to a cure would be fantastic.

Alan: What would you like me to do to help Bill?

Bill: Alan, you’re an experienced web publisher. I’d like you to publish my findings and journey of discovery – a patient perspective to support those that suffer and those that support them. Interview the experts too and support the community with their expertise too. You’re good at this and it will help a lot. I’d be greatly appreciative and I know others will as well.

Alan: Thanks Bill. I appreciate your support as well. Asthma is a worthy cause. Take care of yourself and stay safe!

Bill: Thanks and you as well.

Support the WAF to Defeat Asthma. Here are some specific ways to help:

* Become a subscriber. It’s free and easy
* Like us on Facebook
* Follow us On Twitter
* Subscribe to our RSS feed. Use the latest browsers (IE and FireFox) or one of these “top ten Windows and Mac feed readers” to automatically receive updates as new podcasts are available
* Link to us from your site. (
* Visit and support World Asthma Day
* Send a link to a friend. Share this resource with one of your friends, students or teachers.
* Become a volunteer and advocate for Asthma
* Bookmark our site. Add our link to your favorite social bookmarking site.

Fragranced consumer products: effects on asthmatics

WAF Salutes Anne Steinemann, Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010 Australia

Fragranced consumer products, such as cleaning supplies, air fresheners, and personal care products, can emit a range of air pollutants and trigger adverse health effects. This study investigates the prevalence and types of effects of fragranced products on asthmatics in the American population. Using a nationally representative sample (n?=?1137), data were collected with an on-line survey of adults in the USA, of which 26.8% responded as being medically diagnosed with asthma or an asthma-like condition.

Results indicate that 64.3% of asthmatics report one or more types of adverse health effects from fragranced products, including respiratory problems (43.3%), migraine headaches (28.2%), and asthma attacks (27.9%). Overall, asthmatics were more likely to experience adverse health effects from fragranced products than non-asthmatics (prevalence odds ratio [POR] 5.76; 95% confidence interval [CI] 4.34–7.64). In particular, 41.0% of asthmatics report health problems from air fresheners or deodorizers, 28.9% from scented laundry products coming from a dryer vent, 42.3% from being in a room cleaned with scented products, and 46.2% from being near someone wearing a fragranced product. Of these effects, 62.8% would be considered disabling under the definition of the Americans with Disabilities Act. Yet 99.3% of asthmatics are exposed to fragranced products at least once a week. Also, 36.7% cannot use a public restroom if it has an air freshener or deodorizer, and 39.7% would enter a business but then leave as quickly as possible due to air fresheners or some fragranced product. Further, 35.4% of asthmatics have lost workdays or a job, in the past year, due to fragranced product exposure in the workplace. More than twice as many asthmatics would prefer that workplaces, health care facilities and health care professionals, hotels, and airplanes were fragrance-free rather than fragranced. Results from this study point to relatively simple and cost-effective ways to reduce exposure to air pollutants and health risks for asthmatics by reducing their exposure to fragranced products.

The online version of this article (10.1007/s11869-017-0536-2) contains supplementary material, which is available to authorized users.
Keywords: Asthma, Fragranced consumer products, Indoor air quality, Fragrance, Health effects, Volatile organic compounds, Semi-volatile organic compounds


Fragranced consumer products pervade society and emit numerous volatile organic compounds, such as limonene, alpha-pinene, beta-pinene, acetaldehyde, and formaldehyde (Steinemann 2015; Nazaroff and Weschler 2004), and semi-volatile organic compounds, such as musks and phthalates (Weschler 2009; Just et al. 2010). However, ingredients in fragranced products are exempt from full disclosure on product labels or safety data sheets (Steinemann 2015), limiting awareness of potential emissions and exposures. Fragranced products have been associated with a range of adverse health effects including work-related asthma (Weinberg et al. 2017), asthmatic exacerbations (Kumar et al. 1995; Millqvist and Löwhagen 1996), respiratory difficulties (Caress and Steinemann 2009), mucosal symptoms (Elberling et al. 2005), migraine headaches (Kelman 2004), and contact dermatitis (Rastogi et al. 2007; Johansen 2003), as well as neurological, cardiovascular, cognitive, musculoskeletal, and immune system problems (Steinemann 2016).

This article investigates specifically the effects of exposure to fragranced products on asthmatics in the US population. In addition to health impacts, it also investigates societal access, preferences for fragrance-free environments, awareness of fragranced product emissions, and implications for air quality and health. It compares results from the sub-population of asthmatics with non-asthmatics, as well as with the general US population, as reported in Steinemann (2016). The study provides important data on the extent and severity of the problem, pointing to opportunities to reduce the adverse health, economic, and societal effects by reducing exposure to fragranced products.


A nationally representative on-line survey was conducted of the US population, representative of age, gender, and region (n?=?1137, confidence limit?=?95%, confidence interval?=?3%). The survey drew upon a large web-based US panel (over 5,000,000 people) held by Survey Sampling International, using randomized participant recruitment (SSI 2016). The survey instrument was developed and tested over a two-year period before full implementation in June 2016. The survey response rate was 95% (responses to panel recruitment 1201; screen-outs 13; drop-outs 46; completes 1137), and all responses were anonymous. The research study received ethics approval from the University of Melbourne. Details on the survey methodology are provided as a supplemental document.

This article extends and deepens the general population study of Steinemann (2016) by analyzing specifically the effects on asthmatics and compared to non-asthmatics and the general population. Of the general population surveyed, 26.8% responded as being medically diagnosed with either asthma (15.2%, n?=?173) or an asthma-like condition (12.5%, n?=?142) or both (26.8%, n?=?305). For the purposes of the article, the sub-population of “asthmatics” will be those medically diagnosed with asthma, an asthma-like condition, or both; the sub-population of “non-asthmatics” will be those in the general population other than asthmatics.

Survey questions investigated use and exposure to fragranced products, both from one’s own use and from others’ use, exposure contexts and products, health effects related to exposures, impacts of fragrance exposure in the workplace and in society, awareness of fragranced product ingredients and labeling, preferences for fragrance-free environments and policies, and demographic information.

Specific exposure contexts included air fresheners or deodorizers used in public restrooms and other environments, scented laundry products coming from a dryer vent, being in a room after it was cleaned with scented cleaning products, being near someone wearing a fragranced product, entering a business with the scent of fragranced products, fragranced soap used in public restrooms, and ability to access environments that used fragranced products.

Fragranced products were categorized as follows: (a) air fresheners and deodorizers (e.g., sprays, solids, oils, disks); (b) personal care products (e.g., soaps, hand sanitizer, lotions, deodorant, sunscreen, shampoos); (c) cleaning supplies (e.g., all-purpose cleaners, disinfectants, dishwashing soap); (d) laundry products (e.g., detergents, fabric softeners, dryer sheets); (e) household products (e.g., scented candles, restroom paper, trash bags, baby products); (f) fragrance (e.g., perfume, cologne, after-shave); and (g) other.

Health effects were categorized as follows: (a) migraine headaches; (b) asthma attacks; (c) neurological problems (e.g., dizziness, seizures, head pain, fainting, loss of coordination); (d) respiratory problems (e.g., difficulty breathing, coughing, shortness of breath); (e) skin problems (e.g., rashes, hives, red skin, tingling skin, dermatitis); (f) cognitive problems (e.g., difficulties thinking, concentrating, or remembering); (g) mucosal symptoms (e.g., watery or red eyes, nasal congestion, sneezing); (h) immune system problems (e.g., swollen lymph glands, fever, fatigue); (i) gastrointestinal problems (e.g., nausea, bloating, cramping, diarrhea); (j) cardiovascular problems (e.g., fast or irregular heartbeat, jitteriness, chest discomfort); (k) musculoskeletal problems (e.g., muscle or joint pain, cramps, weakness); and (j) other. Categories were derived from prior studies of fragranced products and health effects (Caress and Steinemann 2009; Miller and Prihoda 1999) and pre-tested before full survey implementation.


Main findings are presented in this section, and full results for asthmatics, non-asthmatics, and the general population are provided as supplemental documentation. Demographic information is provided in Table ?Table11.

Table 1

Demographic information
Asthmatics Non-asthmatics General population
% of column total N
% of general population row N
% of column total
% of column total % of general population row
Total 305 305 832 832 1137
100.0% 26.8% 100.0% 73.2% 100.0%
?All males 136 136 389 389 525
44.6% 25.9% 46.8% 74.1% 46.2%
?All females 169 169 443 443 612
55.4% 27.6% 53.2% 72.4% 53.8%
?Male 18–24 16 16 31 31 47
5.2% 34.0% 3.7% 66.0% 4.1%
?Male 25–34 36 36 94 94 130
11.8% 27.7% 11.3% 72.3% 11.4%
?Male 35–44 42 42 94 94 136
13.8% 30.9% 11.3% 69.1% 12.0%
?Male 45–54 30 30 78 78 108
9.8% 27.8% 9.4% 72.2% 9.5%
?Male 55–65 12 12 92 92 104
3.9% 11.5% 11.1% 88.5% 9.1%
?Female 18–24 26 26 52 52 78
8.5% 33.3% 6.3% 66.7% 6.9%
?Female 25–34 40 40 95 95 135
13.1% 29.6% 11.4% 70.4% 11.9%
?Female 35–44 43 43 112 112 155
14.1% 27.7% 13.5% 72.3% 13.6%
?Female 45–54 41 41 103 103 144
13.4% 28.5% 12.4% 71.5% 12.7%
?Female 55–65 19 19 81 81 100
6.2% 19.0% 9.7% 81.0% 8.8%
Open in a separate window
Fragranced product exposure

Among asthmatics, 99.0% are exposed to fragranced products at least once a week, from their own use (71.1% air fresheners and deodorizers; 85.9% personal care products; 78.4% cleaning supplies; 81.3% laundry products; 76.7% household products; 67.5% fragrance; 3.6% other). Further, 94.8% are exposed to fragranced products at least once a week, from others’ use. Combined, 99.3% of asthmatics are exposed to fragranced products through their own use, others’ use, or both. Among non-asthmatics, 98.1% are exposed to fragranced products at least once a week from their own use, 91.1% from others’ use, and 98.9% from either or both. Thus, asthmatics are more likely to be exposed to fragranced products, from their own use and others’ use and both, than non-asthmatics (POR, 1.66; 95% CI, 0.36–7.71).
Adverse health effects

Among asthmatics, 64.3% reported one or more types of adverse health effects from exposure to one or more types of fragranced products (43.3% respiratory problems; 27.2% mucosal symptoms; 28.2% migraine headaches; 19.0% skin problems; 27.9% asthma attacks; 15.1% neurological problems; 14.1% cognitive problems; 12.1% gastrointestinal problems; 9.8% cardiovascular problems; 11.1% immune system problems; 9.5% musculoskeletal problems; and 1.3% other). Among non-asthmatics, 23.8% reported one or more types of adverse health effects from exposure to one or more types of fragranced products (see Table ?Table2).2). Thus, among all types of health effects (excepting asthma attacks), asthmatics are more likely to be affected than non-asthmatics (POR 5.76; 95% CI, 4.34–7.64).
Table 2

Frequency and types of adverse health effects reported from exposure to fragranced consumer products
Asthmatics Non-asthmatics General population
305 832 1137
26.8% 73.2% 100.0%
Migraine headaches 86 93 179
28.2% 11.2% 15.7%
Asthma attacks 85 6 91
27.9% 0.7% 8.0%
Neurological problems 46 36 82
15.1% 4.3% 7.2%
Respiratory problems 132 79 211
43.3% 9.5% 18.6%
Skin problems 58 63 121
19.0% 7.6% 10.6%
Cognitive problems 43 23 66
14.1% 2.8% 5.8%
Mucosal symptoms 83 101 184
27.2% 12.1% 16.2%
Immune system problems 34 11 45
11.1% 1.3% 4.0%
Gastrointestinal problems 37 26 63
12.1% 3.1% 5.5%
Cardiovascular problems 30 20 50
9.8% 2.4% 4.4%
Musculoskeletal problems 29 14 43
9.5% 1.7% 3.8%
Other 4 15 19
1.3% 1.8% 1.7%
Total 196 198 394
(One or more health problems) 64.3% 23.8% 34.7%
Open in a separate window

Of the 64.3% of asthmatics reporting adverse health effects from fragranced products, proportionately more males report adverse effects than females, relative to non-asthmatics (asthmatic 52.0% female, 48.0% male; non-asthmatic 60.1% female, 39.9% male) (POR 1.39; 95% CI, 0.93–2.97) (see Table ?Table3).3). Among all age groups, proportionately more asthmatics in age group 25–34 report adverse effects relative to non-asthmatics (asthmatic 69.7%; non-asthmatic 23.3%) (POR 7.59; 95% CI, 4.19–13.76). Among all gender and age groups, proportionately more males age 25–34 report adverse effects relative to non-asthmatics (asthmatic 83.3%; non-asthmatic 18.1%) (POR 22.65; 95% CI, 8.15–62.92).
Table 3

Demographic information for individuals reporting adverse effects from exposure to fragranced products
Asthmatics Non-asthmatics General population
% of column total N
% of asthmatics row, Table ?Table11 N
% of column total N
% of non-asthmatics row, Table ?Table11 N
% of column total N
% of general population row, Table 1
Total 196 196 198 198 394 394
100.0% 64.3% 100.0% 23.8% 100.0% 34.7%
?All males 94 94 79 79 173 173
48.0% 69.1% 39.9% 20.3% 43.9% 33.0%
?All females 102 102 119 119 221 221
52.0% 60.4% 60.1% 26.9% 56.1% 36.1%
?Male 18–24 8 8 6 6 14 14
4.1% 50.0% 3.0% 19.4% 3.6% 29.8%
?Male 25–34 30 30 17 17 47 47
15.3% 83.3% 8.6% 18.1% 11.9% 36.2%
?Male 35–44 31 31 24 24 55 55
15.8% 73.8% 12.1% 25.5% 14.0% 40.4%
?Male 45–54 17 17 15 15 32 32
8.7% 56.7% 7.6% 19.2% 8.1% 29.6%
?Male 55–65 8 8 17 17 25 25
4.1% 66.7% 8.6% 18.5% 6.3% 24.0%
?Female 18–24 12 12 8 8 20 20
6.1% 46.2% 4.0% 15.4% 5.1% 25.6%
?Female 25–34 23 23 27 27 50 50
11.7% 57.5% 13.6% 28.4% 12.7% 37.0%
?Female 35–44 28 28 33 33 61 61
14.3% 65.1% 16.7% 29.5% 15.5% 39.4%
?Female 45–54 27 27 26 26 53 53
13.8% 65.9% 13.1% 25.2% 13.5% 36.8%
?Female 55–65 12 12 25 25 37 37
6.1% 63.2% 12.6% 30.9% 9.4% 37.0%
Open in a separate window
Specific exposure contexts

Air fresheners and deodorizers were associated with health problems for 41.0% of asthmatics (54.4% respiratory problems, 39.2% asthma attacks, 29.6% mucosal symptoms, 36.8% migraine headaches, 15.2% neurological problems, 26.4% skin problems, and others), and for 12.9% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from air fresheners than non-asthmatics (POR 4.71; 95% CI, 3.47–6.39).
Table 4

Frequency and types of health problems experienced by asthmatics, non-asthmatics, and the general population from exposure to four types of fragranced consumer products
Air fresheners or deodorizers Scented laundry products Scented cleaning products Fragranced person
Asth Non-asth Gen Pop Asth Non-asth Gen Pop Asth Non-asth Gen Pop Asth Non-asth Gen Pop
Health problem 125 107 232 88 54 142 129 95 224 141 127 268
41.0% 12.9% 20.4% 28.9% 6.5% 12.5% 42.3% 11.4% 19.7% 46.2% 15.3% 23.6%
Migraines 46 36 82 24 13 37 42 33 75 45 51 96
36.8% 33.6% 35.3% 27.3% 24.1% 26.1% 32.6% 34.7% 33.5% 31.9% 40.2% 35.8%
Asthma attacks 49 4 53 27 1 28 42 4 46 41 3 44
39.2% 3.7% 22.8% 30.7% 1.9% 19.7% 32.6% 4.2% 20.5% 29.1% 2.4% 16.4%
Neurological 19 17 36 16 8 24 28 19 47 27 14 41
15.2% 15.9% 15.5% 18.2% 14.8% 16.9% 21.7% 20.0% 21.0% 19.1% 11.0% 15.3%
Respiratory 68 40 108 34 12 46 67 42 109 77 41 118
54.4% 37.4% 46.6% 38.6% 22.2% 32.4% 51.9% 44.2% 48.7% 54.6% 32.3% 44.0%
Skin 33 32 65 22 19 41 25 20 45 24 15 39
26.4% 29.9% 28.0% 25.0% 35.2% 28.9% 19.4% 21.1% 20.1% 17.0% 11.8% 14.6%
Cognitive 15 16 31 9 6 15 21 10 31 21 9 30
12.0% 15.0% 13.4% 10.2% 11.1% 10.6% 16.3% 10.5% 13.8% 14.9% 7.1% 11.2%
Mucosal 37 49 86 27 21 48 35 48 83 40 58 98
29.6% 45.8% 37.1% 30.7% 38.9% 33.8% 27.1% 50.5% 37.1% 28.4% 45.7% 36.6%
Immune system 16 5 21 16 3 19 18 5 23 17 2 19
12.8% 4.7% 9.1% 18.2% 5.6% 13.4% 14.0% 5.3% 10.3% 12.1% 1.6% 7.1%
Gastrointestinal 18 13 31 20 9 29 17 15 32 21 10 31
14.4% 12.1% 13.4% 22.7% 16.7% 20.4% 13.2% 15.8% 14.3% 14.9% 7.9% 11.6%
Cardiovascular 18 12 30 11 4 15 16 10 26 15 5 20
14.4% 11.2% 12.9% 12.5% 7.4% 10.6% 12.4% 10.5% 11.6% 10.6% 3.9% 7.5%
Musculoskeletal 19 8 27 21 2 23 13 10 23 15 2 17
15.2% 7.5% 11.6% 23.9% 3.7% 16.2% 10.1% 10.5% 10.3% 10.6% 1.6% 6.3%
Other 2 6 8 1 3 4 2 2 4 2 5 7
Open in a separate window

Scented laundry products coming from a dryer vent were associated with health problems for 28.9% of asthmatics (38.6% respiratory problems, 30.7% asthma attacks, 30.7% mucosal symptoms, 27.3% migraine headaches, 18.2% neurological problems, 25.0% skin problems, and others), and for 6.5% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from scented laundry products coming from a dryer vent than non-asthmatics (POR 5.84; 95% CI, 4.03–8.46).

Being in a room after it has been cleaned with scented products was associated with health problems for 42.3% of asthmatics (51.9% respiratory problems, 32.6% asthma attacks, 27.1% mucosal symptoms, 32.6% migraine headaches, 21.7% neurological problems, 19.4% skin problems, and others), and for 11.4% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from being in a room after it has been cleaned with scented products than non-asthmatics (POR 5.69; 95% CI, 4.16–7.77).

Being near someone wearing a fragranced product was associated with health problems for 46.2% of asthmatics (54.6% respiratory problems, 29.1% asthma attacks, 28.4% mucosal symptoms, 31.9% migraine headaches, 19.1% neurological problems, 17.0% skin problems, and others), and 15.3% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from being near someone wearing a fragranced product than non-asthmatics (POR 4.77; 95% CI, 3.56–6.40).

Exposure to fragranced products can trigger disabling health effects, according to criteria from the Americans with Disabilities Act (ADA 1990): “Do any of these health problems substantially limit one or more major life activities, such as seeing, hearing, eating, sleeping, walking, standing, lifting, bending, speaking, breathing, learning, reading, concentrating, thinking, communicating, or working, for you personally?” Among asthmatics reporting health problems, 62.8% reported that the severity of the health effect from fragranced product exposure was potentially disabling. Thus, asthmatics were more likely to report disabling health effects from fragranced products than non-asthmatics (POR 7.13; 95% CI, 5.11–9.95).
Ingredient disclosure and product claims

Among asthmatics, 41.3% were not aware that a “fragrance” in a product is typically a chemical mixture of several dozen to several hundred chemicals, 57.4% were not aware that fragrance chemicals do not need to be fully disclosed on the product label or material safety data sheet, and 58.0% were not aware that fragranced products typically emit hazardous air pollutants such as formaldehyde. Further, 64.3% of asthmatics, and 75.7% of non-asthmatics, were not aware that even so-called natural, green, and organic fragranced products typically emit hazardous air pollutants (28.9% of asthmatics and 15.7% of non-asthmatics were aware). However, 60.3% of asthmatics, and 60.1% of non-asthmatics, would not still use a fragranced product if they knew it emitted hazardous air pollutants.
Societal and workplace effects

Fragranced products can also present barriers for asthmatics in public places and the workplace. Among asthmatics, 36.7% are prevented from using the restrooms in a public place, because of the presence of an air freshener, deodorizer, or scented product. Also, 28.9% are prevented from washing their hands with soap in a public place, if the soap is fragranced. Further, 43.9% are prevented from going to some place because they would be exposed to a fragranced product that would make them sick. Notably, 39.7% report that if they enter a business, and smell air fresheners or some fragranced product, they want to leave as quickly as possible.

Significantly, 35.4% of asthmatics, and 7.7% of non-asthmatics, have become sick, lost workdays, or lost a job, in the past 12 months, due to fragranced products in their work environment. Thus, asthmatics were more likely to have lost workdays or lost a job due to illness from fragranced products in their work environment than non-asthmatics (POR 6.58; 95% CI, 4.65–9.30).

Fragrance-free policies receive a strong majority of support. Among asthmatics, 66.2% would be supportive of a fragrance-free policy in the workplace (compared to 16.1% that would not). Thus, more than four times as many asthmatics would prefer a fragrance-free workplace than fragranced. Also, 72.1% of asthmatics would prefer that health care facilities and health care professionals be fragrance-free (compared to 14.8% that would not). Thus, nearly five times as many asthmatics would prefer fragrance-free health care facilities and professionals than fragranced.

Among non-asthmatics, 48.3% would support a fragrance-free workplace (compared with 21.0% that would not), and among the general population, 53.1% would support a fragrance-free workplace (compared with 19.7% that would not). Thus, regardless of population, fragrance-free workplaces receive more than twice as many in support as not.

Asthmatics also strongly prefer fragrance-free airplanes and hotels. If given a choice between flying on an airplane that pumped scented air throughout the passenger cabin, or did not pump scented air throughout the passenger cabin, 63.6% of asthmatics would choose an airplane without scented air (compared to 24.9% with scented air). Similarly, if given a choice between staying in a hotel with fragranced air, or without fragranced air, 63.0% would choose a hotel without fragranced air (compared to 28.5% with fragranced air).

Among non-asthmatics, 57.6 and 52.9% would prefer fragrance-free airplanes and hotels, respectively (compared with 23.1 and 27.5% that would not) and among the general population, 59.2 and 55.6% would prefer fragrance-free airplanes and hotels, respectively (compared with 23.6 and 27.8% that would not). Thus, overall, more than twice as many asthmatics, as well as the general population, would prefer that airplanes and hotels were fragrance-free rather than fragranced.


Asthma is a serious and increasing health condition, affecting an estimated 25 million Americans, and costing an estimated $56 billion annually in medical expenses, missed school and work days, and premature deaths (CDCP 2017a). Nearly 12 million Americans had an asthma attack in 2015, many of which could have been prevented (CDCP 2017b).

Results from this study show that asthmatics are profoundly, adversely, and disproportionately affected by exposure to fragranced consumer products. While non-asthmatics are also affected, asthmatics are more likely to experience adverse health effects from exposure (POR 5.76; 95% CI 4.34–7.64).

Of particular concern are involuntary exposures to fragranced products, such as in health care facilities and workplaces. Asthmatics are prevented from accessing public toilets, businesses, and workplaces due to adverse health effects from fragranced products. Further, 35.4% have lost workdays or a job, in the past year, due to fragranced product exposure in the workplace. More than twice as many asthmatics would prefer that workplaces, health care facilities, health care professionals, airplanes, and hotels were fragrance-free than fragranced.

Limitations of the study include the following: (a) data were based on self-reports, although a well-established method for survey research; (b) all possible products and health effects were not included, although the low percentages for responses in the “other” category indicates the survey captured the primary products and effects; (c) product emissions and exposures were not measured directly; (d) the cross-sectional design of the study, while useful for determining prevalence, provides data that represent just one point in time, limiting the analysis of risk factors, temporal relationships between exposures and effects, and trends in prevalence, and (e) only adults (ages 18–65) were included in the survey, which overlooks the effects of fragranced products on children (such as in day care facilities and schools) and on seniors (such as in retirement communities and assisted living facilities).

Results of this study provide strong evidence that fragranced consumer products can harm health for both asthmatics and non-asthmatics, with asthmatics more affected. Understanding why these products are associated with a range of health problems is a critical topic that requires further research. Fragranced products emit a range of volatile and semi-volatile organic compounds, some of which are associated with adverse health effects, but virtually none of which need to be disclosed (Steinemann 2009, 2015), thus limiting scientific inquiry and public awareness of potential exposures to problematic compounds. A broader mechanistic framework is needed to understand which ingredients, or combinations of ingredients, could be associated with the adverse health outcomes reported in this study. In the meantime, a prudent and practical approach, and one that would provide direct and immediate benefits, would be to limit exposure to fragranced consumer products.

Perfumes, Magazines and Severe Asthma

Perfumes Strips and Scents in Magazines “Negatively Affect Asthmatics and adverse respiratory reactions to perfumes says study. In honor of #AsthmaAwarenessWeek and #WorldAsthmaDay can we stop doing this?

Note from the World Asthma Foundation. This study dates back to 1994. How much education is needed to change behavior? Can we PLEASE stop this practice already? It’s 2020 and we all know this to be true already right? Just saying People @people magazine.


Perfume- and cologne-scented advertisement strips are widely used. There are, however, very few data on the adverse effects of perfume inhalation in asthmatic subjects.


This study was undertaken to determine whether perfume inhalation from magazine scent strips could exacerbate asthma.


Twenty-nine asthmatic adults and 13 normal subjects were included in the study. Histories were obtained and physical examinations performed. Asthma severity was determined by clinical criteria of the U.S.National Heart, Lung, and Blood Institute (NHLBI). Skin prick tests with common inhalant allergens and with the perfume under investigation were also performed. Four bronchial inhalation challenges were performed on each subject using commercial perfume scented strips, filter paper impregnated with perfume identical to that of the commercial strips, 70% isopropyl alcohol, and normal saline, respectively. Symptoms and signs were recorded before and after challenges. Pulmonary function studies were performed before and at 10, 20, and 30 minutes after challenges.

Inhalational challenges using perfume produced significant declines in FEV1 in asthmatic patients when compared with control subjects. No significant change in FEV1 was noted after saline (placebo) challenge in asthmatic patients. The percent decline in FEV1 was significantly greater after challenge in severely asthmatic patients as compared with those with mild asthma. Chest tightness and wheezing occurred in 20.7% of asthmatic patients after perfume challenges. Asthmatic exacerbations after perfume challenge occurred in 36%, 17%, and 8% of patients with severe, moderate, and mild asthma, respectively. Patients with atopic asthma had greater decreases in FEV1 after perfume challenge when compared with patients with nonallergic asthma.


Perfume-scented strips in magazines can cause exacerbations of symptoms and airway obstruction in asthmatic patients. Severe and atopic asthma increases risk of adverse respiratory reactions to perfumes.

U.S National Institutes of Health stands with Asthma patients, families, advocates, researchers, and health care professionals

Today on @WorldAsthmaDay, the U.S National Institutes of Health stands with patients, families, advocates, researchers, and health care professionals to raise awareness about this common chronic respiratory disease, the people it affects, and the biomedical research that improves its prevention and treatment.

Asthma is a chronic lung disease that causes periods of wheezing, chest tightness, shortness of breath, and coughing. It is a major contributing factor to missed time from school and work, with severe attacks requiring emergency room visits and hospitalizations. Sometimes these asthma attacks can be fatal.

This year, we recognize that the coronavirus disease 2019 (COVID-19) pandemic is creating concern and uncertainty for many people around the globe, including those with asthma. The disease can affect the nose, throat, and lungs, cause an asthma attack, and possibly lead to pneumonia and acute respiratory disease. According to the Centers for Disease Control and Prevention(link is external), people with asthma should continue their current asthma medications and discuss any concerns with their healthcare provider. Researchers at NIH and elsewhere are working to learn more about COVID-19 and to develop specific treatments and vaccines.

Three NIH institutes support and conduct studies on asthma — the National Institute of Environmental Health Sciences (NIEHS); the National Heart, Lung, and Blood Institute (NHLBI); and the National Institute of Allergy and Infectious Diseases (NIAID). Institute scientists and grantees made several important advances in understanding, treating, and managing asthma in 2019. These findings and other highlights are featured in five topic areas below:

Relationship between asthma and COVID-19
Populations at risk of developing asthma
Potential new treatments
Genes involved in asthma
Asthma management

Relationship between asthma and COVID-19

NIAID is initiating a home-based study to assess the incidence of infection with SARS-CoV-2, the virus that causes COVID-19, in children and their caregivers and siblings. A key objective of this observational study will be to determine if infection rates or immune responses to SARS-CoV-2 infection differ in children who have asthma or other allergic conditions compared to those who have not been diagnosed with or treated for these conditions.

NIAID also is starting an observational study in patients hospitalized for COVID-19 to understand if specific characteristics of the immune response influence or reflect the severity of infection. This study may help determine whether underlying diseases, such as asthma, influence the body’s response to SARS-CoV-2 infection.
Populations at risk of developing asthma


NIH scientists are making progress in understanding the underlying factors that contribute to the development of asthma in U.S. children. This year, an international collaboration led by NIEHS scientists reported that the presence of newly discovered novel epigenetic markers — or chemical tags that attach to DNA — may indicate a newborn’s risk of developing asthma. The data were generated by the Pregnancy and Childhood Epigenetics Consortium and may help researchers find asthma biomarkers, or molecular indicators of asthma, and identify at birth which children will eventually develop the condition.

At NHLBI, researchers discovered a link(link is external) between childhood asthma flare ups and changes in the lung microbiome, the communities of bacteria and other microorganisms that are normally present in the lung and usually do not cause symptoms. The scientists determined that children with mild to moderate asthma who experienced early signs of an upcoming asthma flare up tended to have higher levels of certain types of disease-causing bacteria in their lungs. The study could lead to a precision medicine approach for treating mild to moderate childhood asthma by altering the number and types of bacteria in a child’s airways.

Ongoing NIAID-funded clinical studies focus on interventions to prevent asthma development in children at high risk of developing the condition. One team of researchers studied a large group of children who were hospitalized as infants with bronchiolitis, a common early-life lung infection usually caused by a virus. The scientists found that recurrent wheezing by age 3 is at least three times more likely to occur in children whose bronchiolitis was associated with a rhinovirus C infection and who also had early signs of allergy to foods or inhaled allergens.

African Americans and people of African ancestry

Another group that bears a disproportionate burden of asthma is African Americans. In an NHLBI-funded study that is the largest genome-wide association study of asthma in African ancestry populations to date, researchers identified two novel regions on a specific chromosome that may be linked to asthma risk. The scientists theorize that a better understanding of the genetic risk factors for asthma in African ancestry populations will lead to development of better therapeutic interventions.
Potential new treatments

Using a mouse model of asthma, NIEHS researchers reported a possible treatment for neutrophilic asthma, a particularly severe form that responds poorly to the standard asthma therapy of corticosteroids. The orally available drug VTP-938 made it easier for the mice to breathe after they were exposed to house dust extracts. The results suggest that VTP-938 may be an innovative treatment for humans with this steroid-resistant form of asthma.
Genes involved in asthma

An NIAID-funded study sought to understand why some, but not all, colds lead to asthma attacks among children with asthma. The scientists obtained nasal washings from 106 children with severe asthma who experienced cold symptoms. Members of the research team compared samples from those who required corticosteroids after a cold-induced asthma attack and those who did not have an asthma attack following a cold. The research team found that colds that led to an asthma attack caused changes in the production of six families of genes that are associated with maintaining the function of the outermost layer of tissue lining the respiratory tract and with the responses of immune cells in close contact with this layer.

Variations in two genes — the aryl hydrocarbon receptor nuclear translocator (ARNT) and the protein tyrosine phosphatase, nonreceptor type 22 (PTPN22) — are associated with immune-mediated diseases, such as asthma, in several ethnicities, according to NIEHS researchers and their collaborators. Because ARNT and PTPN22 are sensitive to environmental factors, this study is the first to demonstrate across ethnicities the combined role of these genes and environmental changes in the development of immune-related conditions like asthma.
Asthma management

NHLBI’s National Asthma Education Prevention Program is coordinating the 2020 focused updates to the 2007 Asthma Management Guidelines. These guidelines are designed to improve the care of people living with asthma as well as help primary care providers and specialists make decisions about asthma management. NHLBI released the updated focus areas of the guidelines for public comment, and the final recommendations for these areas are expected to be published later this year. They will address several priority topic areas listed below:

Using inhaled medications when needed
A new type of inhaled medication called long acting muscarinic antagonists
Treating allergies by exposure to low doses of allergens by mouth or with shots
Reducing indoor asthma triggers
A new procedure for asthma known as bronchial thermoplasty
A fractional exhaled nitric oxide test that may be helpful in diagnosing or managing asthma

Experts hope that these guidelines will help reduce the burden of asthma nationwide and improve the quality of life for those living with the condition.

Defeating Asthma Series Announced for World Asthma Day, May 5, 2020


World Asthma Foundation is supporting care of Asthma and asthmatics around the world through a new series focused on Defeating Asthma with the aim of shining a spotlight on getting to a cure

The World Asthma Foundation (WAF) exists for education and advocacy for people with asthma who suffer medically with health issues that make them highly vulnerable to the COVID-19 virus and other diseases.

We’ve hunkered down close to home here at the WAF. While doing so, we’re poring over volumes of available Asthma research data to share our understanding of the root causes of Asthma with emphasis on Severe Asthma.

Our ultimate goal is to understand the root cause of Severe Asthma (already considered a pandemic by many) while we aim for a cure. By banding together with other Asthmatics, including those that care about Asthmatics and clinicians that treat, we can defeat Asthma and we can do so now.

Why this Matters:

  • Asthma is not one disease but many and the causes underlying its development and manifestations are many including environmental issues
  • Asthma has reached pandemic levels around the globe
    Asthma is a chronic lung disease that affects over 300 million worldwide
  • The projected rate will reach 400 million by 2025
  • Environmental exposures have been proven to play a significant role in the development of asthma and as triggers
  • Asthma is believed to be determined by a complicated set of one’s own genetics and environmental exposures including a multitude of toxic chemicals and the overuse of antibiotics
  • In the U.S., African Americans are almost three times more likely to die from asthma-related causes than the white population
  • Australia reported the highest rate of doctor diagnosed, clinical/treated asthma, and wheezing
  • Defining asthma remains an ongoing challenge and innovative methods are needed to identify, diagnose, and accurately classify asthma at an early stage to most effectively implement optimal management and reduce the health burden attributable to asthma
  • According to the U.S. Centers for Disease Control, The total annual cost of asthma in the United States, including medical care, absenteeism and mortality, was $81.9 Billion a year.

We can move the needle by taking action now to make the difference for those that suffer from Asthma.” – Alan Gray, Director WAF Australia

What you can expect from the WAF Severe Asthma Series

Follow along with the series (click here) as we cover a variety of topics of interest to Asthmatics. 

  • What are the various types of Severe Asthma
  • What drives Severe Asthma
  • Impact of the environment on Severe Asthma
  • For additional on Asthma and the Microbiome click here 
  • What are the treatment options for Severe Asthma
  • Real world case studies with in-depth analysis
  • University research
  • Live expert podcast and interviews
  • Healthy lifestyle resources
  • Asthma advocacy guide and communication strategies for talking with your medical team

WAF will bring fresh perspectives from experts in the field that affects Asthmatics.

What we’d like from you:

Follow along, subscribe, share with a friend and send us your feedback.
Connect with us on Twitter and on Facebook

Delivered by FeedBurner



Severe Asthma News

Severe Asthma News Announced at American Thoracic Society Conference

If you suffer from severe Asthma you’re not alone. As you’ve been following the World Asthma Foundation, (WAF) then you’re aware that we’ve declared war on Asthma here at the #ATS2013 annual conference where leading Asthma specialist meet. If you suffer from severe Asthma like I do, then this news from Boehringer Ingelheim (BI) will be of interest to you.

BI today announced data from Phase 2 and Phase 3 studies from the Company’s ongoing clinical trial program investigating the efficacy and safety of tiotropium in asthma. These data were presented at the American Thoracic Society International Conference (ATS 2013) in Philadelphia, Pennsylvania.

To determine whether the effect on bronchodilation and time to first severe exacerbation seen in severe asthma patients in the two Phase 3 PrimoTinA-asthma™ studies was limited to definable subgroups of patients, pre-planned subgroup analyses of the data were carried out. The PrimoTinA-asthma™ studies were replicate trials evaluating once-daily tiotropium delivered via the Respimat® inhaler in patients with severe persistent asthma.

The pre-planned subgroup analyses demonstrated that tiotropium delivered once daily via the Respimat® inhaler showed promising results across a broad spectrum of patients with severe persistent asthma who remained symptomatic and experienced exacerbations despite current treatment with at least high-dose inhaled corticosteroids (ICS) and/or long-acting beta2 agonists (LABA).

“These analyses show that the results for time to first severe exacerbation and first episode of asthma worsening found with the addition of tiotropium may not be limited to specific subgroups of patients,” said Professor Huib A. M. Kerstjens of the University Medical Centre, Groningen, The Netherlands, and one of the main authors on the presented studies. “Asthma affects patients with all kinds of medical histories and backgrounds. These results suggest tiotropium’s promise independent of patients’ baseline characteristics, providing an important clinical insight into tiotropium’s potential in asthma treatment.”

Neither the time to first severe exacerbation nor the time to first episode of asthma worsening was dependent on baseline characteristics, some of which are usually found in patients with chronic obstructive pulmonary disease (COPD), such as former smoking, non-allergic status or minimal bronchodilator response.

It was also important to investigate whether patients included in the PrimoTinA-asthma™ Phase 3 studies were identified to have asthma alone and not comorbid COPD.

In a separate study presented at ATS, further analysis of the PrimoTinA-asthma™ data suggested that improvements in lung function seen in the Phase 3 studies were related to tiotropium’s potential role in asthma and not due to comorbid COPD diagnosis, as strict criteria were used to ensure patients enrolled in the studies had a confirmed diagnosis of asthma and that patients with COPD were excluded.

“Despite current treatment options, approximately 40 percent of people with asthma remain symptomatic and may experience life-threatening asthma exacerbations,” said Tunde Otulana , MD, acting head, Clinical Development and Medical Affairs, Boehringer Ingelheim Pharmaceuticals, Inc. “Finding new advancements for the growing number of people affected by asthma remains one of Boehringer Ingelheim’s priorities, and we are encouraged to see additional data reinforcing tiotropium’s potential as an additional treatment option for asthma patients who remain symptomatic on current therapies.”

About the PrimoTinA-Asthma™ Phase 3 Studies

The PrimoTinA-asthma™ Phase 3 studies were two replicate double-blind, parallel group trials including asthma patients aged 18-75 years, with at least a five-year history of asthma, diagnosed before the age of 40 years, and life-long non-smokers or ex-smokers (10 pack-years or less) who quit smoking one or more years before study enrollment.

A total of 912 patients were randomized to receive tiotropium 5 mcg delivered via the Respimat® inhaler (n=256) or placebo (n=256) for 48 weeks. In addition to ICS/LABA, patients in the trials were permitted to receive additional background therapy, including antihistamines, anti-allergic agents, nasal steroids and omalizumab.

The primary endpoints included peak and trough forced expiratory volume (FEV1) and time to first severe exacerbation. In these studies, the rate of adverse events (AEs) reported in the tiotropium add-on and placebo add-on groups was similar. The most commonly reported AEs were asthma, peak expiratory flow (PEF) rate decrease, nasopharyngitis and headache.

Additional Data Presented at ATS 2013

In addition to the PrimoTinA-asthma™ data, Boehringer Ingelheim presented data investigating tiotropium in adult patients with moderate persistent asthma. Results from a Phase 2 double-blind, randomized, placebo-controlled, four-way crossover study with no washout periods revealed all three doses of tiotropium (1.25, 2.5 and 5 mcg) as an add-on therapy to ICS in symptomatic patients with moderate persistent asthma were statistically different (P < 0.0001) from placebo for the primary endpoint FEV1 peak(0-3h). The most promising once-daily tiotropium dose was 5 mcg delivered via the Respimat® inhaler. The overall incidence of AEs was comparable between placebo and the three tiotropium doses, and serious adverse events were rare and considered unrelated to treatment. The most commonly reported AEs were asthma and nasopharyngitis. Tiotropium is being investigated to determine its efficacy and safety in treating asthma patients and is not currently approved for this indication. About the UniTinA-Asthma™ Clinical Trial Program The PrimoTinA-asthma™ studies are a part of the comprehensive Phase 3 trial program UniTinA-asthma™, which includes 18 clinical trials in adults, adolescents and pediatric patients across different asthma severities who remain symptomatic on current treatment with inhaled corticosteroids. The program includes more than 4,000 patients in 150+ sites globally. About Asthma Asthma is a chronic disease characterized by airway inflammation and bronchoconstriction. When a person with asthma comes into contact with an asthma trigger (e.g. infections, pollen, smoke), their airways can become inflamed, swollen and constricted and excess mucus is produced. These reactions can cause the airways to become narrower and irritated, making it difficult to breathe. People suffering from asthma experience recurrent episodes of wheezing, breathlessness, chest tightness and coughing. Asthma attacks occur when symptoms become more intense or frequent. As of December 2012, an estimated 300 million people worldwide suffer from asthma. Estimates have shown that the number of people with asthma could grow by an additional 100 million people worldwide by 2025. By avoiding asthma triggers, one can help to reduce the severity of asthma. Although asthma cannot be cured, appropriate management can control the disease in many patients. However, many patients still suffer from uncontrolled asthma despite the available treatment options. They can continue to have symptoms and lifestyle restrictions and might even require emergency care. Leading Respiratory Forward Through research, treatments and patient-centric support services, the Boehringer Ingelheim lung health portfolio is designed to help address the challenges people living with a lung disease face every day. Leveraging the company's cutting edge science and leadership in chronic obstructive pulmonary disease (COPD), Boehringer Ingelheim is researching new treatment approaches where needs persist. It is the company's goal to make a difference in the lives of patients with COPD, asthma, lung cancer, idiopathic pulmonary fibrosis and other respiratory diseases. About Boehringer Ingelheim Pharmaceuticals, Inc. Boehringer Ingelheim Pharmaceuticals, Inc., based in Ridgefield, CT, is the largest U.S. subsidiary of Boehringer Ingelheim Corporation (Ridgefield, CT) and a member of the Boehringer Ingelheim group of companies. The Boehringer Ingelheim group is one of the world's 20 leading pharmaceutical companies. Headquartered in Ingelheim, Germany, it operates globally with 140 affiliates and more than 46,000 employees. Since it was founded in 1885, the family-owned company has been committed to researching, developing, manufacturing and marketing novel medications of high therapeutic value for human and veterinary medicine. As a central element of its culture, Boehringer Ingelheim has a demonstrated commitment to corporate social responsibility. Involvement in social projects, caring for employees and their families, and providing equal opportunities for all employees form the foundation of the global operations. Mutual cooperation and respect, as well as environmental protection and sustainability are intrinsic factors in all of Boehringer Ingelheim's endeavors. In 2012, Boehringer Ingelheim achieved net sales of about $19.1 billion (14.7 billion euro). R&D expenditure in the business area Prescription Medicines corresponds to 22.5% of its net sales. For more information please visit SOURCE Boehringer Ingelheim

Asthma Symptoms Impairs Sleep

Asthma symptoms impair sleep quality and school performance in children

#ATS2013, PHILADELPHIA ? The negative effects of poorly controlled asthma symptoms on sleep quality and academic performance in urban schoolchildren has been confirmed in a new study.

“While it has been recognized that missed sleep and school absences are important indicators of asthma morbidity in children, our study is the first to explore the associations between asthma, sleep quality, and academic performance in real time, prospectively, using both objective and subjective measures,” said principal investigator Daphne Koinis-Mitchell, PhD, Associate Professor of Psychiatry & Human Behavior (Research) and Associate Professor of Pediatrics (Research) at Brown University’s Alpert Medical School in Providence, Rhode Island. “In our sample of urban schoolchildren (aged 7 to 9), we found that compromised lung function corresponded with both poor sleep efficiency and impaired academic performance.”

The results of the study will be presented at the American Thoracic Society’s 2013 International Conference.

The study included data on 170 parent-child dyads from urban and African-American, Latino, and non-Latino white backgrounds who reside in Greater Providence, RI. These data are part of a larger 5-year study of asthma and allergic rhinitis symptoms, sleep quality and academic performance (which will include 450 urban children with persistent asthma and healthy controls) funded by The Eunice Kennedy Shriver National Institute of Child Health and Human Development. Project NAPS (Nocturnal Asthma and Performance in School) is administered through Rhode Island Hospital at The Bradley Hasbro Research Center.

Asthma symptoms were assessed over three 30-day monitoring periods across the school year by spirometry, which measures the amount and speed of exhaled air, and with diaries maintained by children and their caregivers. Sleep quality was assessed with actigraphy, which measures motor activity that can be used to estimate sleep parameters. Asthma control was assessed with the Asthma Control Test (ACT), a brief questionnaire used to measure asthma control in children. Academic functioning was assessed by teacher report during the same monitoring periods.

Compared with children with well-controlled asthma, those with poorly controlled asthma had lower quality school work and were more careless with their school work, according to teacher reports. Higher self-reported and objectively measured asthma symptom levels were associated with lower quality school work. Poorer sleep quality was also associated with careless school work. Increased sleep onset latency (the amount of time children take to fall asleep) was associated with more difficulty in remaining awake in class.

“Our findings demonstrate the detrimental effects that poorly controlled asthma may have on two crucial behaviors that can enhance overall health and development for elementary school children; sleep and school performance,” said Dr. Koinis-Mitchell. “Urban and ethnic minority children are at an increased risk for high levels of asthma morbidity and frequent health care utilization due to asthma. Given the high level of asthma burden in these groups, and the effects that urban poverty can have on the home environments and the neighborhoods of urban families, it is important to identify modifiable targets for intervention.”

“Family-level interventions aimed at asthma control and improving sleep quality may help to improve academic performance in this vulnerable population,” Dr. Konis-Mitchell continued. “In addition, school-level interventions can involve identifying children with asthma who miss school often, appear sleepy and inattentive during class, or who have difficulty with school work. Working collaboratively with the school system as well as the child and family may ultimately enhance the child’s asthma control.”

* Please note that numbers in this release may differ slightly from those in the abstract. Many of these investigations are ongoing; the release represents the most up-to-date data available at press time.

Abstract 42716

Asthma, Sleep, And School Functioning In Urban Children
Type: Scientific Abstract
Category: 02.03 – Disparities in Lung Disease and Treatment (BSHSR)
Authors: D. Koinis Mitchell; Brown Medical School/Rhode Island Hospital – Providence, RI/US; and the Project NAPS Study Group

Abstract Body

Rationale: Urban children are at an increased risk for asthma morbidity. Poor quality sleep is an indicator that asthma is in poor control. Asthma and poor sleep can affect children’s academic performance. No studies have examined asthma, sleep quality, and academic functioning in urban children with asthma using objective and subjective methods. This study investigates associations among asthma symptoms (FEV1 and symptom reports), asthma control, sleep efficiency (through actigraphy) and academic functioning in a sample of urban children.

Methods: Data are from a larger study of asthma and allergic rhinitis symptoms, sleep quality and academic performance in urban children (aged 7-9).To date, data are collected from 170 parent-child dyads from African-American, Latino, and non-Latino white backgrounds. Asthma symptoms were assessed by FEV1 percent predicted via the AM2 (electronic hand-held spirometer) over three, 30 day monitoring periods across the academic year. Children and caregivers also recorded days when asthma symptoms were present via a standard diary. Sleep quality was assessed through actigraphy for 3, 30 day periods across the academic year. Asthma diagnosis and persistent asthma status were confirmed through clinician assessment using standardized procedures (NHLBI, 2007). Asthma control was assessed using the ACT. Teachers reported on children’s academic functioning during the same time periods when asthma and sleep data were collected.

Results: Results to date show that children with poorly controlled asthma had lower quality school work by teacher report (MN=2.2) relative to their counterparts with well controlled asthma (MN=2.8; F(1,73)=4.9, p=.03). Similarly, on average, children with poor asthma control were reported to be more careless with their school-work (MN=3.1) relative to children with good asthma control (MN=2.5; F(1,73)=4.5, p=.04).

Higher levels of asthma symptoms (by diary report) were related to lower quality of school work (r= – .24, p=.03) by teacher report. Careless and hasty schoolwork was negatively associated with objectively measured asthma symptoms (FEV1), (r= -.25, p=.05).

Careless school work was associated with poorer sleep quality (r= -.25, p=.03). Teacher report of children’s struggle to stay awake in class was negatively associated with sleep onset latency (r=-.29, p=.01), suggesting that children who are more alert in class have less difficulty falling asleep.

Conclusions: Results to date indicate that children’s asthma symptoms correspond with sleep efficiency indicators using objective and subjective methods, and children’s academic performance by teacher report. Results can inform family and school-based interventions designed to improve asthma control, sleep quality and academic performance in urban children.

New Asthma Trials Shows Promise

New Asthma Trials Shows Promise – Let’s Declare War on Asthma Starts Now!

#ATS2013. The World Asthma Foundation (WAF) is covering the American Thoracic Conference #ATS2013 this week in search of solutions for Asthma suffers everywhere. To that end, press reports published today reflect that a new type of asthma drug meant to attack the underlying causes of the respiratory disease slashed episodes by 87 percent in a mid-stage trial, making it a potential game changer for patients with moderate to severe disease, researchers said on Tuesday.

“Overall, these are the most exciting data we’ve seen in asthma in 20 years,” said Dr. Sally Wenzel, lead investigator for the 104-patient study of dupilumab, an injectable treatment being developed by Regeneron Pharmaceuticals Inc and French drugmaker Sanofi in reports to Reuters.

The drug also met all its secondary goals, such as improving symptoms and lung function and reducing the need for standard drugs called beta agonists.

Although far larger trials will be needed to confirm findings from the “proof of concept” study, researchers expressed optimism. They noted that dupilumab has also shown the ability to tame atopic dermatitis, or severe eczema, an allergic condition that is not well controlled by current treatments.

Results of the 12-week asthma study are being presented on Tuesday at the annual scientific meeting of the American Thoracic Society in Philadelphia.

WAF in our effort to Declare War On Asthma will be following this story very closely. Stay tuned for in depth interviews on this topic.

Read full article at