The World Asthma Foundation Announces Speakers for Microbiome First Summit

On this World Asthma Day, May 3, 2002, The Microbiome First – Pathway to Sustainable Healthcare Summit organization committee invites healthcare professionals, non-communicable disease community leaders, and stakeholders to participate in the inaugural Microbiome First Summit, a virtual event taking place online at MicrobiomeFirst.org this May, 17-19, 2022. FREE to participants.

For detailed information and to register, visit: https://microbiomefirst.org/

The event, Microbiome First – Pathway to Sustainable Healthcare Summit, kicks off the inaugural event underwritten and moderated by the
World Asthma Foundation (WAF), which is pleased to announce the
following speakers:

Event Keynote
RODNEY DIETERT, PHD
Cornell University Professor Emeritus
Ithaca, NY, USA
Author of The Human Superorganism.
Keynote: “Big Picture View of Our Tiny Microbes”

Researcher Sessions
MARIE-CLAIRE ARRIETA, PHD
Associate Professor, departments of Physiology, Pharmacology, and Pediatrics, University of Calgary
Calgary AB, CANADA
Session: “The early-life mycobiome in immune and metabolic development”

JAEYUN SUNG, PHD
Assistant Professor, Microbiome Program, Center for Individualized Medicine, Mayo Clinic.
Rochester, MN, USA
Session: “A predictive index for health status using species-level gut microbiome profiling”

KATRINE L. WHITESON, PHD
Assistant Professor, Molecular Biology and Biochemistry School of Biological Sciences
Associate Director, UCI Microbiome Initiative
Irvine, CA, USA
Session: “High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids”

LISA AZIZ-ZADEH, PHD
Cognitive neuroscientist; Expert in brain imaging, autism, body cognition
Associate Professor in the USC Chan Division of Occupational Science and Occupational Therapy
Los Angeles, CA, USA
Session: “Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder”

MARTIN KRIEGEL, MD, PHD
Chief of Rheumatology and Clinical Immunology at University Hospital of Münster
GERMANY
Associate Professor Adjunct of Immunobiology at Yale School of Medicine.
Session: “Dietary Resistant Starch Effects on Gut Pathobiont Translocation and Systemic Autoimmunity”

ERICA & JUSTIN SONNENBURG, PHD
Senior research scientist and Associate Professor in the Department of Microbiology and Immunology at the Stanford University School of Medicine.
Palo Alto, CA, USA
Session: “Gut-microbiota-targeted diets modulate human immune status”

EMMA HAMILTON-WILLIAMS, PHD
Associate Professor
Principal Research Fellow
The University of Queensland Diamantina Institute
Faculty of Medicine
The University of Queensland
Translational Research Institute
Woolloongabba, QLD, AUSTRALIA
Session: “Metabolite-based Dietary Supplementation in Human Type 1 Diabetes is associated with Microbiota and Immune modulation”

ANDRES CUBILLOS-RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science at Massachusetts Institute of Technology
Cambridge, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

EMERAN A MAYER, MD
Gastroenterologist, Neuroscientist, Distinguished Research Professor
Department of Medicine, UCLA David Geffen School of Medicine
Executive Director, G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA
Founding Director, UCLA Brain Gut Microbiome Center.
Los Angeles, CA, USA
Session: “The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications”

BENOIT CHASSAING, PHD
Principal Investigator, Chassaing Lab
Associate professor, French National Institute of Health and Medical Research.
Paris, FRANCE
Session: “Ubiquitous food additive and microbiota and intestinal environment”

SEI WON LEE, MD, PHD
Associate Professor
College of Medicine, University of Ulsan
Department of Pulmonary and Critical Care, Asan Medical Center
Seoul, KOREA
Session: “The Therapeutic Application of Gut-Lung Axis in Chronic Respiratory Disease”

PATRICIA MACCHIAVERNI, PHD
Clinical and translational researcher
Research Fellow, The University of Western Australia
Perth, WA, AUSTRALIA
Honorary Research Associate, Telethon Kids Institute.
Session:House Dust Mite Shedding in Human Milk: a Neglected Cause of Allergy Susceptibility?”

LIEKE VAN DEN ELSEN, PHD
Research Fellow, The University of Western Australia, Australia
Honorary Research Associate, Telethon Kids Institute.
Perth, WA, AUSTRALIA
Session: “Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention”

PAUL TURNER, PHD
Rachel Carson Professor of Ecology and Evolutionary Biology, Yale University
Microbiology faculty member, Yale School of Medicine.
New Haven, CT, USA
Session: “New Yale Center to Advance Phage Research, Understanding, Treatments, Training, Education”

ANDRES CUBILLOS- RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science of Massachusetts Institute of Technology MIT
Boston, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

CLAUDIA S. MILLER, MD, MS
Emeritus Professor, Allergy/Immunology and Environmental Health University of Texas San Antonio, TX, USA
Session: “Toxicant-Induced Lost of Tolerance for Chemicals, Foods and Drugs: a Global Phenomenon”

Media Supporter Content
TONI HARTMAN
PRINCIPAL
Microbiome Courses
London, England UK
Session “Educating Parents About ‘Seeding And Feeding’ A Baby’s Microbiome”

Summit Details:

The goal of the Microbiome First – Sustainable Healthcare Summit is to
improve quality of life at reduced cost by addressing the microbiome
first, as recent research shows that all of these non-communicable diseases have a relationship to the microbiome.

For additional information visit https://microbiomefirst.org/ or on Twitter at @MicrobiomeFirst https://twitter.com/MicrobiomeFirst

Bisphenol A or BPA in Pregnancy and Asthma Study

The Barcelona Institute for Global Health supported study concludes suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.

Study Background

In utero, (before birth) exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only.

Study Objectives

There is growing concern over the role of chemical pollutants on early life origins of respiratory diseases (Gascon et al., 2013, Vrijheid et al., 2016, Casas and Gascon, 2020, Abellan and Casas, 2021), specifically on bisphenols due to their large production worldwide (CHEMTrust, 2018) and its widespread exposure to human populations (Calafat et al., 2008, Haug et al., 2018). Bisphenol A (BPA) is the most commonly used bisphenol. It is present in polycarbonate plastics and epoxy resins, used in many consumer products, and diet is the main source of exposure (Liao and Kannan, 2013). In 2017, the European Chemical Agency considered BPA as a “substance of very high concern” (Calafat et al., 2008, Agency and Bisfenol, 2017). Consequently, BPA production is restricted in some countries, which has resulted in the emergence of substitutes such as bisphenol F (BPF) and bisphenol S (BPS), with suspected similar toxicity (Lehmler et al., 2018, Rochester and Bolden, 2015). Bisphenols can cross the placenta and are also found in breastmilk, which results in exposure to foetuses and newborns (Lee et al., 2018). To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex.

Methods

We included 3,007 mother–child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999–2010). Between 7 and 11 years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data.

In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only.

Study Objective

To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex.

Results

Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR = 1.13, 95% CI = 1.01, 1.27) and wheeze (OR = 1.14, 95% CI = 1.01, 1.30) (p-interaction sex = 0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses.

Conclusion

This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girl

According the U.S. National Institute of Health, Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics. It is found in various products including shatterproof windows, eyewear, water bottles, and epoxy resins that coat some metal food cans, bottle tops, and water supply pipes.

How does BPA get into the body?

The primary source of exposure to BPA for most people is through the diet. While air, dust, and water are other possible sources of exposure, BPA in food and beverages accounts for the majority of daily human exposure.

Bisphenol A can leach into food from the protective internal epoxy resin coatings of canned foods and from consumer products such as polycarbonate tableware, food storage containers, water bottles, and baby bottles. The degree to which BPA leaches from polycarbonate bottles into liquid may depend more on the temperature of the liquid or bottle, than the age of the container. BPA can also be found in breast milk.

Why are people concerned about BPA?
One reason people may be concerned about BPA is because human exposure to BPA is widespread. The 2003-2004 National Health and Nutrition Examination Survey (NHANES III) conducted by the Centers for Disease Control and Prevention (CDC) found detectable levels of BPA in 93% of 2517 urine samples from people six years and older. The CDC NHANES data are considered representative of exposures in the United States. Another reason for concern, especially for parents, may be because some animal studies report effects in fetuses and newborns exposed to BPA.

If I am concerned, what can I do to prevent exposure to BPA?

Some animal studies suggest that infants and children may be the most vulnerable to the effects of BPA. Parents and caregivers can make the personal choice to reduce exposures of their infants and children to BPA:

  • Don’t microwave polycarbonate plastic food containers. Polycarbonate is strong and durable, but over time it may break down from over use at high temperatures.
    Plastic containers have recycle codes on the bottom. Some, but not all, plastics that are marked with recycle codes 3 or 7 may be made with BPA.
  • Reduce your use of canned foods.
    When possible, opt for glass, porcelain or stainless steel containers, particularly for hot food or liquids.
  • Use baby bottles that are BPA free.

There is growing concern over the role of chemical pollutants on early life origins of respiratory diseases (Gascon et al., 2013, Vrijheid et al., 2016, Casas and Gascon, 2020, Abellan and Casas, 2021), specifically on bisphenols due to their large production worldwide (CHEMTrust, 2018) and its widespread exposure to human populations (Calafat et al., 2008, Haug et al., 2018). Bisphenol A (BPA) is the most commonly used bisphenol. It is present in polycarbonate plastics and epoxy resins, used in many consumer products, and diet is the main source of exposure (Liao and Kannan, 2013). In 2017, the European Chemical Agency considered BPA as a “substance of very high concern” (Calafat et al., 2008, Agency and Bisfenol, 2017). Consequently, BPA production is restricted in some countries, which has resulted in the emergence of substitutes such as bisphenol F (BPF) and bisphenol S (BPS), with suspected similar toxicity (Lehmler et al., 2018, Rochester and Bolden, 2015). Bisphenols can cross the placenta and are also found in breastmilk, which results in exposure to foetuses and newborns (Lee et al., 2018).

Asthma Rates and Mask – Good or Bad?

65% drop in serious asthma cases due to mask-wearing Israeli hospital reports

The Times of Israel reports that the Sheba Medical, an Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing.

Here’s the 411 according to published reports:

• A study conducted by Sheba Medical Center found that the past year saw a 65 percent drop in serious asthma cases that required hospitalization.

• The drop was credited to widespread mask-wearing during the COVID-19 pandemic, which also helped decrease the spread of viruses such as the flu in the past year.

• By wearing masks, people are also less likely to suffer from seasonal allergies, as face coverings prevent pollen from flowers, trees, and grass coming into contact with the nose and mouth.

• The report follows Israel’s decision to drop the requirement to wear masks outdoors.

Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing Jerusalemites wearing face masks walk in Jerusalem on February 04, 2021.

Asthma and Bacteria in Early Life

Staphylococcus aureus enterotoxins (intestinal toxins) have been demonstrated to affect airway disease including Asthma in early life according to multiple studies. The study of Asthma and Bacteria in early life is very interesting.

To further the WAF misson to improve our understanding of what drives Severe Asthma, the World Asthma Foundation reached out to Rodney Dietert, PhD, for his thoughts on the topic of Asthma and Staphylococcus aureus.

Rodney Dietert, PhD is a Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life.

Asthma and Bacteria in Early Life: Staphylococcus Aureus

This is the second interview of three on the topic of Asthma and Staphylococcus aureus with Rodney Dietert, PhD. Today we learn about:

  • Relationship between Asthma and Staphylococcus aureus
  • Multinational studies on the topic of Asthma and Staphylococcus aureus
  • Importance of diet

 

Asthma and Bacteria in Early Life: Staphylococcus Aureus

World Asthma Foundation: Can you talk about the relationship between Staph A and Asthma as a biomarker in early life?

Rodney Dietert, PhD: Yes. There’s a multi-nation study that was done to look at the nasal microbiome in early life. They were measuring that two, four, six, nine months up through to two years and then looked, among their cohorts, at asthma between ages 6 and 18.

Nasal Microbiota Findings

What they found was really striking. They found four major categories of progression of the nasal microbiota as the infant aged. There was one of those groups where Staph A was the most prevalent bacterium or Staphylococcus, and particularly Staph A, that was present. The two-month major (bacterium). It was the main bacterium.

That group that started that way, at two months, had, I think it ranged from age 6 to 18, they were measuring asthma and that microbiome beginning (2 months). That contributed to 45 to 60% of the asthma among all of those children they were evaluating. Just from that one (microbiota) type. That was really an impressive predictor of asthma in later childhood. That suggests you don’t want to see Staph A like that, in a two-month-year-old baby. If you do, you better do something about it.

Staph A

Now, again, that is still an association but we understand what Staph A does to the immune system, because of what it does in terms of producing toxins that actually are allergens or can be allergens, what it does to IgE production. You know if that is really the prevalent nasal bacteria at that age and that is not what you usually see, that’s a problem. Right there, there is a biomarker in my opinion that should be a red flag. We should be looking to do something about that.

Sweet Consumption

There are also studies in early life that show consumption of sweets is a contributing factor to the risk when you’ve got Staph A in there. Some of the children actually seem to have a receptor detection of sweet issue. There’s a cohort that actually can’t tell that they’ve really had what would be considered an overabundance of sweets. They’re a little resistant to detecting it, so they eat more and that actually will propel them to severe asthma later on. That combination of Staph A, and diet even, is very important.

Asthma and Bacteria in Early Life: Staph A
Asthma and Bacteria in Early Life: Staph A, Rodney Dietert PhD

For additional information on Asthma and Staphylococcus aureus and the WAF defeating Asthma Project, visit:

Defeating Asthma Project

Asthma and Sustainable Healthcare – Rodney Dietert PhD Interview

World Asthma Foundation” Defeating Asthma Series Uncovers New Hope for Asthma Management

Asthmatics: Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma. Looking at Asthma and Sustainable Healthcare, keeping costs under control while delivering high quality healthcare.

In this interview with Rodney Dietert, PhD Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life we learn about the benefits of Sustainable Healthcare and what we should be thinking about to get there.

Interview on Asthma and Sustainable Healthcare

World Asthma Foundation: You write about the microbiome and sustainable health care. Can you explain why this matters?

Dr. Dietert: I think that recent estimates from CDC and WHO, that global death by these non-communicable diseases like asthma, inflammatory bowel, and the like, it’s not just developed countries but developing countries as well. Is 70-75% of all deaths are from these conditions.

You might note that people live sometimes many decades with these conditions with polypharmacy. Furthermore, if you have one of those, you have a really good chance as you age of having more. That requires additional medications, each one with different side effects, and potential drug interactions can occur.

We think we’re very healthy because of longevity. But we lead a lot of our life in illness and sometimes stressing our caregivers’ system because some of these (conditions) require caregivers as well. There’s a different path. That (the present path) is not, in my mind, a sustainable path.

Testing Sustainable Healthcare

My family are well represented in some of these diseases. We know the trajectory, we’ve lived the trajectory and there’s a different way to go. Once you recognize that it starts with our interaction with the external world, and the microbiome is the interface. It’s what they see: the chemicals, drugs, food first. And what we get is what they’ve dealt with and left behind or metabolized and reacted to.

Control What Can Be Controlled

We can and should control that and it should be integrated so we’re dealing with it like the regenerative agriculture people. Dealing with the soil, the air, the water, the plants, the animals, and us as a continuum of microbial interactions, where we can really have everything be healthy and sustainable.

Reduce Disease Prevalence

If we do that, we’re going to reduce the prevalence of these diseases. The drug companies will find other ways to continue to be profitable in a sustainable way, but we don’t need to be chasing symptoms of some of these diseases but instead cure the disease.

Treating Symptoms Not Causes

Quite frankly, I think I’ve discussed in the book, we’ve cured very few of these diseases. We treat symptoms. In fact, we only treat presenting symptoms. I’ve shown how these diseases are all very much connected as co-morbid factors of each other. A child diagnosed with asthma, we know what kind of diseases are likely to show up in those groups of children with asthma as they age.

In my mind, physicians have yet to deal with that. They actually don’t do things that stop that from happening in a 30, 40, 50-year old when they see a child with asthma. They treat the symptom of the day. That’s a change and a change that would allow us to be much more sustainable in our health and in our medicine that we practice.

Asthma and Sustainable Healthcare
Asthma and Sustainable Healthcare, Rodney Dietert PdD