How the microbiome affects asthma: new insights from a Spanish study

The World Asthma Foundation (WAF). WAF is a nonprofit organization dedicated to improving the lives of people with asthma through education, research, and advocacy. In this blog post, I want to share with you some exciting findings from a recent study on the microbiome and asthma, published by Spanish researchers in the journal Nutrients.

The microbiome is the collection of microorganisms that live in and on our bodies, such as bacteria, fungi, viruses, and parasites. The microbiome plays an important role in our health and immunity, and can also influence our susceptibility and response to various diseases, including asthma.

Asthma is a chronic inflammatory disease of the airways that affects millions of people worldwide. Asthma can be triggered by different factors, such as allergens, infections, pollution, stress, and diet. Asthma can also have different phenotypes (characteristics), such as allergic or non-allergic, eosinophilic or non-eosinophilic, mild or severe.

What is the microbiome and how does it affect asthma?

The study by Valverde-Molina and García-Marcos reviews the current evidence and challenges on the relationship between the microbiome and asthma, specifically how microbial dysbiosis (an imbalance of the microbial communities in the body) can influence the origins, phenotypes, persistence, and severity of asthma.

How different factors can influence the microbiome and asthma

The study explores how different factors, such as diet, environment, genetics, and infections, can affect the microbiome and asthma, and how modulating the microbiome could be a potential strategy for preventing or treating asthma. The study also reviews the different methods and techniques used to study the microbiome and its interactions with the immune system and the respiratory system.

The gut-lung axis: a key connection between the microbiome and asthma

One of the key points of the study is the importance of the gut-lung axis in the origin and persistence of asthma. The gut-lung axis is the concept that describes how the gut and lung microbiomes communicate with each other through various pathways, such as metabolites, cytokines, antibodies, and immune cells. The gut-lung axis can modulate inflammation and allergic responses in both organs.

The study shows that the process of microbial colonization in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others.

How microbial dysbiosis can lead to different asthma phenotypes and severity

Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low ?-diversity (the number of different species) and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes (a group of bacteria that includes lactobacilli), could be related with increased risk of asthma.

Upper airway microbial dysbiosis, especially early colonization by Moraxella spp. (a type of bacteria that can cause respiratory infections), is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites (substances produced by metabolism) that may modify the inception of asthma and its progression.

The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is
the increased bacterial load (the number of bacteria) and the predominance of proteobacteria (a group of bacteria that includes Haemophilus spp. and Moraxella catarrhalis), especially in severe asthma.

Candida albicans: a fungal culprit in asthma development and exacerbation

The study also mentions Candida albicans (a type of fungus that can cause infections) as one of the fungal genera that can affect the gut and lung microbiome and asthma. Candida albicans can trigger inflammation and autoimmune responses in the body. Candida albicans can also induce a Th17 response (a type of immune response) in the gut and lungs. Candida albicans can also increase lung bacterial load and exacerbate airway inflammation.

This study is very relevant to our own research and findings on Candida’s role in inflammation and autoimmune response: implications for severe asthma. We published an article on this topic on our website on October 13th 2021 which features findings from Mayo Clinic researchers who examined how intestinal fungal microbiota affects lung resident memory CD4+ T cells (a type of immune cell) in patients with asthma.

You can find our article here: https://worldasthmafoundation.org/candidas-role-in-inflammation-and-autoimmune-response-implications-for-severe-asthma.htm

How modulating the microbiome could be a promising strategy for asthma prevention and treatment

We think that these studies complement each other well and provide valuable insights into this important and emerging topic. We believe that understanding the microbiome and its impact on asthma is crucial for developing new and effective strategies for prevention, diagnosis, and treatment of this chronic disease.

Clean Air for Better Health: World Asthma Day and Indoor Air Quality

As we celebrate World Asthma Day, it is important to acknowledge the risks associated with asthma and the benefits of having clean air. Asthma is a chronic respiratory disease that affects millions of people worldwide. It is a condition that causes the airways in the lungs to become inflamed and narrow, making it difficult to breathe. While outdoor air pollution has been identified as a major risk factor for asthma, the air quality inside our homes and workplaces can also have a significant impact on our health.

To raise awareness about the importance of indoor air quality, the TimeToClearTheAir.com campaign aims to educate people on the simple steps they can take to improve the air quality inside their homes and workplaces. One of the key messages of the campaign is that clean air is essential for good health and well-being.

According to the World Health Organization (WHO), indoor air pollution is responsible for over 4 million premature deaths every year. Indoor air pollution can be caused by a variety of factors, including cooking, cleaning, smoking, and the use of certain household products. To achieve clean indoor air, there are several steps that individuals and households can take.

One of the most important steps is to eliminate sources of indoor air pollution. This can include switching to non-toxic cleaning products, using natural air fresheners, and avoiding smoking indoors. In addition, it is important to ensure that ventilation systems are functioning properly and to regularly clean air filters.

Monitoring indoor air quality is also crucial in identifying sources of pollution and taking steps to eliminate them. This can be done using a variety of devices, including air quality monitors and carbon monoxide detectors. Seeking professional help when necessary, such as hiring a professional to assess indoor air quality or installing an air purification system, is also important.

Air pollution is a major risk factor for asthma, and it can trigger asthma symptoms or exacerbate existing asthma. The most common sources of air pollution include traffic emissions, industrial activities, and burning fossil fuels. But indoor air pollution can also contribute to the problem, as allergens, pet dander, mold, and tobacco smoke can all cause asthma symptoms.

Clean the Air for World Asthma Day is a call-to-action that emphasizes the importance of reducing air pollution for the health of people with asthma and the general population. To Clean the Air for World Asthma Day, we need to take action on multiple fronts. One of the most important steps is to reduce outdoor air pollution, which requires government policies and action from industry to reduce emissions.

Individuals can also take steps to reduce their exposure to air pollution and improve their indoor air quality. This includes reducing the use of products that emit volatile organic compounds (VOCs), using natural cleaning products, and avoiding smoking or exposure to secondhand smoke. Ventilating indoor spaces properly and regularly cleaning air filters can also help improve indoor air quality.

In addition to these actions, individuals can support policies and organizations that promote clean air. This includes advocating for clean energy and transportation policies, supporting asthma research and education, and participating in local community initiatives to reduce air pollution.

In conclusion, clean air is essential for good health and well-being. By taking simple steps to improve indoor air quality and advocating for policies that reduce air pollution, we can reduce the risk of respiratory problems, including asthma, and enhance our overall quality of life. The TimeToClearTheAir.com campaign and Clean the Air for World Asthma Day are both valuable resources for individuals and households seeking to improve indoor air quality and promote good health.

The World Asthma Foundation Announces Speakers for Microbiome First Summit

On this World Asthma Day, May 3, 2002, The Microbiome First – Pathway to Sustainable Healthcare Summit organization committee invites healthcare professionals, non-communicable disease community leaders, and stakeholders to participate in the inaugural Microbiome First Summit, a virtual event taking place online at MicrobiomeFirst.org this May, 17-19, 2022. FREE to participants.

For detailed information and to register, visit: https://microbiomefirst.org/

The event, Microbiome First – Pathway to Sustainable Healthcare Summit, kicks off the inaugural event underwritten and moderated by the
World Asthma Foundation (WAF), which is pleased to announce the
following speakers:

Event Keynote
RODNEY DIETERT, PHD
Cornell University Professor Emeritus
Ithaca, NY, USA
Author of The Human Superorganism.
Keynote: “Big Picture View of Our Tiny Microbes”

Researcher Sessions
MARIE-CLAIRE ARRIETA, PHD
Associate Professor, departments of Physiology, Pharmacology, and Pediatrics, University of Calgary
Calgary AB, CANADA
Session: “The early-life mycobiome in immune and metabolic development”

JAEYUN SUNG, PHD
Assistant Professor, Microbiome Program, Center for Individualized Medicine, Mayo Clinic.
Rochester, MN, USA
Session: “A predictive index for health status using species-level gut microbiome profiling”

KATRINE L. WHITESON, PHD
Assistant Professor, Molecular Biology and Biochemistry School of Biological Sciences
Associate Director, UCI Microbiome Initiative
Irvine, CA, USA
Session: “High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids”

LISA AZIZ-ZADEH, PHD
Cognitive neuroscientist; Expert in brain imaging, autism, body cognition
Associate Professor in the USC Chan Division of Occupational Science and Occupational Therapy
Los Angeles, CA, USA
Session: “Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder”

MARTIN KRIEGEL, MD, PHD
Chief of Rheumatology and Clinical Immunology at University Hospital of Münster
GERMANY
Associate Professor Adjunct of Immunobiology at Yale School of Medicine.
Session: “Dietary Resistant Starch Effects on Gut Pathobiont Translocation and Systemic Autoimmunity”

ERICA & JUSTIN SONNENBURG, PHD
Senior research scientist and Associate Professor in the Department of Microbiology and Immunology at the Stanford University School of Medicine.
Palo Alto, CA, USA
Session: “Gut-microbiota-targeted diets modulate human immune status”

EMMA HAMILTON-WILLIAMS, PHD
Associate Professor
Principal Research Fellow
The University of Queensland Diamantina Institute
Faculty of Medicine
The University of Queensland
Translational Research Institute
Woolloongabba, QLD, AUSTRALIA
Session: “Metabolite-based Dietary Supplementation in Human Type 1 Diabetes is associated with Microbiota and Immune modulation”

ANDRES CUBILLOS-RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science at Massachusetts Institute of Technology
Cambridge, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

EMERAN A MAYER, MD
Gastroenterologist, Neuroscientist, Distinguished Research Professor
Department of Medicine, UCLA David Geffen School of Medicine
Executive Director, G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA
Founding Director, UCLA Brain Gut Microbiome Center.
Los Angeles, CA, USA
Session: “The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications”

BENOIT CHASSAING, PHD
Principal Investigator, Chassaing Lab
Associate professor, French National Institute of Health and Medical Research.
Paris, FRANCE
Session: “Ubiquitous food additive and microbiota and intestinal environment”

SEI WON LEE, MD, PHD
Associate Professor
College of Medicine, University of Ulsan
Department of Pulmonary and Critical Care, Asan Medical Center
Seoul, KOREA
Session: “The Therapeutic Application of Gut-Lung Axis in Chronic Respiratory Disease”

PATRICIA MACCHIAVERNI, PHD
Clinical and translational researcher
Research Fellow, The University of Western Australia
Perth, WA, AUSTRALIA
Honorary Research Associate, Telethon Kids Institute.
Session:House Dust Mite Shedding in Human Milk: a Neglected Cause of Allergy Susceptibility?”

LIEKE VAN DEN ELSEN, PHD
Research Fellow, The University of Western Australia, Australia
Honorary Research Associate, Telethon Kids Institute.
Perth, WA, AUSTRALIA
Session: “Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention”

PAUL TURNER, PHD
Rachel Carson Professor of Ecology and Evolutionary Biology, Yale University
Microbiology faculty member, Yale School of Medicine.
New Haven, CT, USA
Session: “New Yale Center to Advance Phage Research, Understanding, Treatments, Training, Education”

ANDRES CUBILLOS- RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science of Massachusetts Institute of Technology MIT
Boston, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

CLAUDIA S. MILLER, MD, MS
Emeritus Professor, Allergy/Immunology and Environmental Health University of Texas San Antonio, TX, USA
Session: “Toxicant-Induced Lost of Tolerance for Chemicals, Foods and Drugs: a Global Phenomenon”

Media Supporter Content
TONI HARTMAN
PRINCIPAL
Microbiome Courses
London, England UK
Session “Educating Parents About ‘Seeding And Feeding’ A Baby’s Microbiome”

Summit Details:

The goal of the Microbiome First – Sustainable Healthcare Summit is to
improve quality of life at reduced cost by addressing the microbiome
first, as recent research shows that all of these non-communicable diseases have a relationship to the microbiome.

For additional information visit https://microbiomefirst.org/ or on Twitter at @MicrobiomeFirst https://twitter.com/MicrobiomeFirst

Asthma and Bacteria: Nose to the Toes

Staphylococcus aureus enterotoxins (intestinal toxins) have a demonstrated effect on airway disease including Asthma in early life according to multiple studies. These bacteria are in the gut and on the skin.

To further the WAF misson to improve our understanding of what drives Severe Asthma, the World Asthma Foundation reached out to Rodney Dietert, PhD, for his thoughts on the topic of Asthma and Staphylococcus aureus.

Rodney Dietert, PhD is a Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED, and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life.

This is the third in the series of interviews on the topic of Asthma and Staphylococcus aureus with Rodney Dietert, Phd.

Today We Learn About

* Staphylococcus aureus beyond the nose including the skin and the gut

Video Interview

Bacteria – Staph A and Asthma

World Asthma Foundation: Dr. Dietert, can we talk about Staphylococcus aureus and Asthma beyond the nose? 

Rodney Dietert, PhD: There are skin and gut microbiome effects on the Staph A asthma connection as well. It’s not just the nose but the nose is a good starting point.

Staph A, diet consumption, the bacteria that are in place, particularly in the nose, but also to some extent in the gut and even the skin, can determine what’s going to happen later in the risk for conditions like asthma. I think the thing to realize is that that bacteria and early on, that’s when you’re still recruiting cells. Lung maturation is one of the late-maturing systems. The lung and brain are late compared to a lot of other physiological systems. You don’t really fully mature the lung until something like 18 or 20.

Those effects on recruiting and getting balance in your immune cells in the lung are really important. When you’ve got a bacterium there that is producing allergens, it is stimulating a population we didn’t use to know about, called T helper 9. These cells produce a cytokine called Interleukin-9. The important thing to know is that these cells interact exquisitely with mast cells. They actually have T helper 9 cells.

Immune cells have histamine receptors so they’re co-stimulating between these cells and mast cells. Imagine (the outcomes) when an infant is skewed toward producing that kind of immune cells in these tissues, like the lung, and them having that kind of interactions with mast cells.

See also Dr. Dietert’s interview about the Gut and Lung connection.

Staph A bacteria - Dr. Dietert.

For full story and video follow the link below

Asthma and Bacteria: Nose to the Toes

Asthma and Environmental Fungi – interview with Marie-Claire Arrieta Ph.D.

World Asthma FoundationDefeating Asthma Series uncovers New Hope for Asthma Managementant

Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

In this interview with Marie-Claire Arrieta Ph.D, Assistant Professor Depts. of Physiology and Pharmacology & Pediatrics Cumming School of Medicine University of Calgary Health Research Innovation Centre, Calgary, Alberta, Canada we learn that:

  • A significant proportion of asthmatics have severe asthma that also cannot be controlled easily with the current treatments
  • The microbiome is not only bacteria just like other ecosystems. Not only bacteria but they’re mix including environmental fungi
  • The microbiome is full of viruses as well

Interview

World Asthma Foundation: Dr. Arrieta, what prompted your research in this area?

Dr. Arrieta: As you know, asthma has no known cures. A significant proportion of asthmatics have severe asthma that also cannot be controlled easily with the current treatments, so we’re trying to figure out ways of improving both the prevention and the potential therapies for asthma. We also know that asthma has become an epidemic disease in Canada. At least it’s quadrupled in incidence over only 30 years, and we know that it’s mainly environmental factors that are explaining or possibly explaining this really great increase in incidence for asthma.

We’ve come to learn in the past 10 years that the microbiome is implicated. The gut microbiome is this very large community of microbes that we all harbor in our inner guts. However, The vast majority of these studies of the microbiome and asthma have only included bacteria, including studies that I have participated in before. This only provides a part of the view of this vast variety of microbes that we know inhabit this microbial ecosystem.

The microbiome is not only bacteria just like other ecosystems. Not only bacteria but they’re mixed, and they definitely include fungi. We thought that studying the role of fungi would be important because molds and environmental fungi are quite common triggers of asthma attacks in asthmatics, also for people with allergies. This, we thought, may suggest that the fungi in the microbiome, that no one has been studying much before, may be involved in some of the immune education that happens early in life that may later in childhood lead to this uncontrolled inflammation in the airways towards environmental fungi, along with other environmental triggers of asthma. That’s why we wanted to look at fungi.

World Asthma Foundation: Excellent. Great study. I’m most impressed. What are some of the key findings?

Dr. Arrieta: We found by giving specific species or types of fungi and/or bacteria to mice, and we used a specific type of mouse known as the germ-free mouse. These are mice that are kept completely devoid of microbes, so they’re like a blank state that you can associate with microbes in a way that would allow you to then make good conclusions from the experiment.

We found that fungi have a very important role in the way the microbiome establishes early in life. When I say microbiome, now I mean a combination of both bacteria and fungi. We also found that fungi are sensed by the immune system differently than bacteria in a way that they seem to amplify the immune response. For example, we found that mice that were colonized only with fungi were more susceptible to asthma.

World Asthma Foundation: Interesting. Along with that, what were some of the other key findings?

Dr. Arrieta: The story’s definitely developing. This study was certainly a proof of concept, but based on this work as well as others that are starting to look at fungi too, we think that when fungi in the intestine of babies bloom, for example, during an antibiotic treatment, this may change the way the immune system responds to this microbiome that is now higher in proportion with certain fungi. This may also increase the susceptibility to those immune alterations that can later lead to asthma in certain people.

World Asthma Foundation: Interesting. I noticed that you mentioned several references to Candida albicans. How does that fit into the mix?

Dr. Arrieta: We don’t know yet. We chose Candida because it’s a very common yeast in our guts. Virtually everyone would have some candida in their bodies, not just in their guts, but it’s a very common inhabitant. Because of that, we wanted to use a species that was common. We found that Candida certainly can outgrow during antibiotic treatments. It may be one of the species implicated, but we’re not there yet. We’re now trying more species of fungi. In fact, we started a new set of experiments based on an infant clinical study that we just completed that showed us exactly which are the yeast and fungal species that bloom when babies are given antibiotics.

This was an interesting clinical study. We ran it at the emergency department of one of our children’s hospitals where we enrolled babies under six months of age, that for one reason or another had to take an antibiotic. This is a very common occurrence for infants. Then what we did was that we followed the microbiome during this antibiotic treatment, and we were able to identify the most common yeasts that seem to outgrow during the antibiotic treatment. We’re focusing on those, and surprisingly, Candida is not one of those all the time. It seems that, of course, Candida is there, but there’s other fungi that are able to outcompete other ones including Candida. Those are the ones that we’re focusing on now.

World Asthma Foundation: Thank you for that. By outcompete, the suggestion or the inference would be that the imbalance of fungi and bacteria are what’s causing the inflammation process?

Dr. Arrieta: That could be that case. That will be the next step, but as I said, the story is very much developing. I think we’re one of the first ones, but we’re not the only ones interested in studying the fungal component of the microbiome and how it relates to allergies and asthma. I think that in the next couple of years we’re going to learn a lot more.

World Asthma Foundation: Fair enough. What implications are there for asthma? Asthma rates are on the rise. What would you like asthmatics to know about your study?

Dr. Arrieta: For now, because the study is developing, I think what we know for sure is that the gut microbiome during early life is extremely important when it comes to, in general, immune development. Because asthma, of course, is an immune disease, these changes in the gut microbiome can certainly determine a baby’s risk to develop this disease, especially as we now understand in families that have a familial history of asthma as well.

What is important to asthmatics to know? There are certain lifestyle, changes, or behaviors that are now being recommended, including natural birth if, of course, is safe and possible, the use of breast milk over formula if it is possible. One of the things that we’re learning more about is that one of the ways to foster a healthy microbiome early in life is when babies start eating solid foods to make the diet as healthy as possible, the way nutritionists have been asking as to do so for decades now because this will foster a varied microbiome.

World Asthma Foundation: Good point. A fair amount of adult asthmatics suffer from fungal issues relative to lung inflammation and infection. Any thoughts on that?

Dr. Arrieta: There’s a couple of clinical studies, and I wish I remember from the top of my head the name of the drug exactly, that is being tested right now. I’m by no means, involved in this. I have just been reading it with great interest because it is an immune modulator. It’s a biological drug that targets some of the immune mechanisms that we now know recognize fungi. It’ll be really interesting to see now from the point of view of these patients, both children, and adults, that have fungal asthma, if this is really going to change their treatment options because as you know, those asthma tend to be more severe and harder to treat as well.

World Asthma Foundation: What would you like the scientific community to know about your research?

Dr. Arrieta: That within this revolution of studying that microbiome, I think we’re missing out by only focusing on bacteria. There’s a great deal that I have learned from my colleagues in microbial ecology. I am not an ecologist, but I started to partner up with them because of the methods and the concepts, and scientific frameworks that they used to study the microbiome. The microbiome is an ecosystem, and we have experts that have been studying ecosystems for decades before biomedical researchers started to study ecosystems. The inclusion of fungi, I think, will get us more answers. Also, the inclusion of other microorganisms that very few people, if any, are considering right now in the context of asthma research, which are viruses, very popular of course now because we’re under a pandemic. The microbiome is full of viruses and children experience many viral infections during the first year of life or the first two years of life. How does the immune system react to that? How does it get educated? I think that using a broader, more ecologically informed approach to study the microbiome is a lesson that I have learned over the years and I hope that others follow suit too.

Asthma and Microbiome Sharing – Rodney Dietert, Phd

World Asthma FoundationDefeating Asthma Series uncovers New Hope for Asthma Managementant

Asthmatics: Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

In the sixth in a series of interviews with Rodney Dietert, PhD Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life we learn about:

  • Existing evidence clearly demonstrates an association between asthma initiation and the microbiome, both respiratory and gastro-intestinal
  • Regenerative Agriculture is good for the microbiome
  • A diet that is not diverse results in a depleted microbiome
  • People or animals with a depleted microbiome are open to getting some microbiome components from others and the environment around them

Interview

World Asthma Foundation:
Dr. Dietert, Can you talk about a) different types of microbiomes, and b) microbiome sharing?

Video interview: Asthma and Microbiome Sharing – Rodney Dietert, Phd

Dr. Dietert: I’ve had an opportunity to lecture at a couple of different conferences. I’ll mention them if you don’t mind. The Quivira Collection – Regenerative Agriculture Conference in Albuquerque and then the Organic and Natural Health Annual Conference was in Florida. You put those two groups together, again, the regenerative agriculture, farmers, ranchers, and scientists doing things in ways that we never envisioned in terms of integration.

They start with the soil, and they start with animals and insects and how you use them together in an ecosystem to really be productive as a rancher or a farmer but to really support the microbiome of soil, of the plants and the diversity of the plants because those are foodstuffs for their production animals. It turns out the more plants that you may have contributing to the diet, the more robust, in a sense, and diversified the production animal is and the phytonutrients that you will gain through the meat or through the milk or through the eggs from that production animal. It is mind-blowing, it is absolutely mind-blowing.

If you don’t mind just a short story, we have examples of that. You have something like the howler monkey in Vietnam, I believe, eats normally in the wild 57 species of plants. In Vietnamese zoos, they eat maybe 12. I forget the exact number but lower double digits. There are some effects on the microbiome. In the US zoos, they eat one plant species. Guess what’s represented in their microbiome which is a very severely degraded microbiome? Their microbiome becomes humanized with the microbes from the animal handlers.

Actually, the same thing happens in our lab rodents, our lab mice, and our lab rats. They are not like wild mice and rats living out in the wild. They are in a very constrained animal handling setting, and they actually acquire the animal technicians’ microbes to some extent. Investigators working on the immune system, for example, told me, “We were doing these great experiments everything was working and then they didn’t.” Turned out there was a new building built, and they moved their animals over there, or they changed all their staff in the animal facility.

It’s a lesson for us that if you’re in a depleted state, you will pick up microbes from your surroundings. One other point about that that’s interesting is that I talked about non-communicable diseases, NCDs. If I wrote that book now, and I am planning a follow-up book, I wouldn’t use that acronym because a lot of people ask me, they say, “I have asthma or I have Crohn’s. We’re not genetically related but my spouse living in the same household, eating the same food, same air, also developed it later on. Is there any chance these things are actually slightly communicable?” The answer is, more and more, yes, slightly communicable is probably right.

If you get a really depleted microbiome state like you’ve had Lyme disease or something, you have multiple extensive rounds of antibiotics and your household has a microbiome that has — you can argue which came first but — is an asthma microbiome or is a Crohn’s or something, psoriasis, yes, you are open to donation. It could be from your home or hotel room or an airplane but you’re open to something getting in. There are tipping points where there’s some evidence that it’s not like a regular pandemic but to some extent, to say it’s non-communicable is not quite right because we’re sharing microbes all the time.

World Asthma Foundation: Dr. Dietert, we certainly thank you for your time, all that you do for the microbiome and the community. Good afternoon, and thanks again.

Dr. Dietert: Well, and thank you for all you do with the World Asthma foundation, Bill. Pleasure.

Gut and Lung Connection to Asthma – Rodney Dietert, PhD

In this fifth in a series of interviews with Rodney Dietert PhD, he talks about communication between the gut and lung. Dr. Dietert is Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life we learn about:

* The Gut and lung communication and its relationship to Asthma

World Asthma FoundationDefeating Asthma Series uncovers New Hope for Asthma Managementant

Asthmatics: Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

Interview

World Asthma Foundation: Research into the Microbiome and its relationship to health has improved significantly in the last few years. For example, we now know about the relationship between the gut and health. We’ve also learned about communication between the gut and the lung and the impact on Asthma. Dr. Dietert, so there’s some crosstalk, right?

Video interview: Asthma Connection to Gut and Lung Cross Talk – Rodney Dietert, PhD

Dr. Dietert: Tremendous crosstalk, absolutely tremendous. You’re correct that if you’re looking at endpoints, something like risk of asthma or management of asthma, then you really, at a minimum, are going to focus both on the respiratory system microbiome and the gut microbiome. That’s not necessarily the exclusion of others but those two are really important. Just like the gut microbiome can affect the brain, it can affect behavior, mood. You don’t need lots of hardcore meds as an antidepressant when you’ve got the solution sitting right in your gut in terms of the microbiome.

With the respiratory system, you’ve got both the local microbes being extremely important but you have crosstalk, you have chemical interactions that are originating in the gut that are affecting the respiratory system as well.

World Asthma Foundation: Dr. Dietert, we certainly thank you for your time, all that you do for the microbiome and the community. Good afternoon, and thanks again.

Dr. Dietert: Well, and thank you for all you do with the World Asthma foundation, Bill. Pleasure.

To learn more about Dr. Dietert, go here.

Gut and Lung crosstalk interview with Rodney Dietert.

Can we test for whats in the Microbiome? – Justin L. Sonnenburg PhD

Defeating Asthma Series uncovers New Hope for Asthma Management

In this interview with Justin L. Sonnenburg PhD, Associate Professor of Microbiology and Immunology at Stanford University, we learn about:

* Testing for Microbes within the Microbiome

* That we’re in the early stages of our understanding of the Microbiome

* Research that still needs to be done

Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

“Diseases largely driven by inflammation and an altered immune system. If we start to take our gut microbiota into account, as we live our life, as we make medical decisions, eat different foods and potentially even eventually reintroduce some of these lost microbes, how profound can the impact be on our health?” Justin L. Sonnenburg Ph.D

Interview

World Asthma Foundation:  Dr. Sonnenburg, can we test for what’s in the microbiome?

Video Interview Can we test for whats in the Microbiome? – Justin L. Sonnenburg PhD

Dr. Justin L. Sonnenburg: On an individual level, there are companies that offer testing for the different species to give you the composition of what’s in your microbiome. I can’t speak to the validity of any of these companies, but there are commercial entities out there that will provide a profile for individuals.

World Asthma Foundation:  Thanks. Do you know if it’s specific? For example, research reflects that Bifidobacterium breve and Lactobacillus specifically have been targeted. I’m not a hundred percent sure if it’s inflammation or infection or both, it seems to be successful. The question is, can we test for those specific bacteria?

Dr. Justin L. Sonnenburg: There are targeted tests out there for specific bacteria that where we think given the species may be of interest. Of course, this is most famous for infectious agents. If you want to go in and see if you have Clostridium difficile or salmonella or something like that, there are specific targeted tests. These are less common for the good guys in our gut. I think part of the reason is we still don’t have a great understanding of what the good guys are.

There are studies out there that indicate certain associated with health States are associated with being able to fight off specific problems.

In general, quite often what’s found for one population when surveyed in an independent population doesn’t necessarily hold up.

There’s just extreme variability in the gut microbiome. I think as much as we know about the field is still how fundamental this community is to our health, we’re still at a really early stage of understanding what is healthy and also coming to grips with the fact that there is no single definition of healthy, that healthy really depends on the individual, the context, and many other factors.

World Asthma Foundation: It’s a complex issue and relatively emerging, right?

Dr. Justin L. Sonnenburg:  Exactly. A lot of research still needs to be done.

World Asthma Foundation: Thank you everything that you do on a daily basis for the gut microbiome, certainly for your teachings and your writings and for your time today. Appreciate it.

Dr. Justin L. Sonnenburg: Wonderful being with you. Thanks so much.

Asthma and the Microbiome – Martin J Blaser MD Interview

Defeating Asthma Series uncovers New Hope for Asthma Management

In this second interview with Martin J Blaser MD, Director of the Center for Advanced Biotechnology and Medicine at Rutgers Biomedical and Health Sciences and the Henry Rutgers Chair of the Human Microbiome and Professor of Medicine and Microbiology at the Rutgers Robert Wood Johnson Medical School in New Jersey and the Author of the “Missing Microbes – How the Overuse of Antibiotics is Fueling Our Modern Plagues.” we learn:

  • About the connection between Asthma and the Microbiome
  • About research and studies that predict Asthma in childhood
  • About bacteria not just in the stomach but in the colon
  • About C-sections and the likelihood to develop asthma
  • About the Mayo Clinic study on Asthma and antibiotics useage

Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

World Asthma Foundation: Dr. Blaser, can you help us connect Asthma and the Microbiome?

[videopress kcn8lw8M]

Dr. Blaser: I’ve gotten very involved in studying the human microbiome in general, not just in the stomach, but in the colon. We and others are working on the relationship of the bacteria (microbiome) in the colon and asthma.

Again, there’s a paper that’s published. A young doctor from Denmark, Dr. Jakob Stokholm, came to work in my lab. This happened after Missing Microbes was published, so it’s not in the book. He’s part of a study in Copenhagen called the COPSAC study, the Copenhagen Open Study of Asthma in Children. They have cohorts of moms whose kids are going to have high risk of asthma, either because they have asthma or they already have a child who has asthma.

In 2010, if I remember correctly, they enrolled 750 moms with this high risk. They obtained fecal samples from the moms. They also got samples from the kids at one week, one month, and one year of life. Then they followed these kids until they were about six. The question was, is there anything that might predict who was going to get asthma at the age of six? We did a lot of work studying the microbiome in their fecal specimens, and what we found is consistent with what other people found: that the microbiome matures over time between one week and one month, and one year. It shows a pattern of maturation, but in some kids, their microbiome doesn’t mature in the normal way.

Then we made a very important observation. In those kids whose microbiome didn’t mature normally when you compare them to kids who did have normal maturation, the odds ratio, the chances that they were going to get asthma when they were six was 3, (300%) meaning a rate three times normal. Then we divided those kids by whether their mother previously had asthma or not. If their mother didn’t have asthma, the maturation pattern did not make a difference, but if their mother did have asthma, the odds ratio was 13.

We’re getting in the range of the association between smoking and lung cancer. That’s how strong that is. That was published about two years ago in Nature Communications. We have a new paper that now is in press. It is about cesarean sections. It’s known that kids born by C-section have a higher risk of developing asthma. The question is why?

From this study, again with the children in the Copenhagen study, we confirmed that kids born by C-section are more likely to develop asthma than those who didn’t. In those kids who had C-section, on average, their microbiome early was abnormal compared to those who were born vaginally. But by a year, in many of them, their microbiome had matured normally, but if it didn’t mature normally, those kids had a very high rate of getting asthma. Again, a high risk. That’s going to be published within a month or two because it’s been accepted already.

Now, what I will tell you is that with Dr. Müeller and with a graduate student in my lab, Tim Borbet, we’ve been doing a lot of mouse-asthma studies where we can experimentally give a mouse asthma or allergy. We already can show that if we perturb the microbiome early in life with antibiotics, they’re going to get more allergy and more asthma. That’s interesting because a paper was just published from British Columbia, showing that they had a really good program to diminish antibiotic use across the whole province. They showed that with diminishing antibiotic use, asthma rates are going down, so it’s all connected.

Furthermore, I’m part of another study that’s also in press. It’s going to be published probably in a month or two with scientists at the Mayo Clinic. I visited there a few years ago. The Mayo clinic is located in Olmsted County, Minnesota. It’s a pretty isolated place. In general, people don’t come, people don’t go, they stay there. It’s a very good stable population to study. I suggested to my colleagues there, why don’t you look at the effects of antibiotics in early life for certain marker diseases, including asthma and food allergy, and atopic dermatitis and allergic rhinitis. All these diseases go together. The group there is very active and outstanding, and they studied about 14,000 kids who were born in Olmsted County, and they were followed up to the time that they were 15 or 14. They had a lot of information from their health records because most of their medical care there is through the Mayo Clinic.

The bottom line is that if they received antibiotics in the first two years of life, their odds ratio of getting asthma was 2. They were twice as likely as kids who did not receive early-life antibiotics. Lots of things are pointing to the importance of the early life microbiome and the importance of when its being perturbed by antibiotics, that there’s increased risk. The relationship with moms, that’s this kind of transgenerational thing that each generation is stepping down.

World Asthma Foundation: A lot of these antibiotics are not only prescribed, but they’re ubiquitous in our diet and our food supply right?.

Dr. Blaser: Yes. Well, I’m very interested in that as well, although the prescribed antibiotic is more important because it’s higher dose. In mice, when we give low doses of antibiotics, it perturbs the immune system but not so much. When we give them the same kind of doses that kids get to treat their ear infections or their throat infections, it really perturbs their immune system and puts it on a different path. That’s also published.

Catch the video interview by clicking here .

Asthma and Indoor Air Pollution:

Key insights for Asthmatics:

  • Makes Asthma Worse
  • Significant Association with Exacerbations
  • Among this panel of relatively moderate to severe asthmatics, the respiratory irritants produced by several domestic combustion sources were associated with increased morbidity.
  • Although there is abundant clinical evidence of asthmatic responses to indoor aeroallergens, the symptomatic impacts of other common indoor air pollutants from gas stoves, fireplaces, and environmental tobacco smoke have been less well characterized. These combustion sources produce a complex mixture of pollutants, many of which are respiratory irritants.
  • Results of an analysis of associations between indoor pollution and several outcomes of respiratory morbidity in a population of adult asthmatics residing in the U.S. Denver, Colorado, metropolitan area. A panel of 164 asthmatics recorded in a daily diary the occurrence of several respiratory symptoms, nocturnal asthma, medication use, and restrictions in activity, as well as the use of gas stoves, wood stoves, or fireplaces, and exposure to environmental tobacco smoke.
  • Multiple logistic regression analysis suggests that the indoor sources of combustion have a statistically significant association with exacerbations of asthma. For example, after correcting for repeated measures and autocorrelation, the reported use of a gas stove was associated with moderate or worse shortness of breath (OR, 1.60; 95% CI, 1.11-2.32), moderate or worse cough (OR, 1.71; 95% CI, 0.97-3.01), nocturnal asthma (OR, 1.01; 95% CI, 0.91-1.13), and restrictions in activity (OR, 1.47; 95% CI, 1.0-2.16
  • The WAF Editorial Board wishes to thank and acknowledge B D Ostro 1 , M J Lipsett, J K Mann, M B Wiener, J Selner
    California Environmental Protection Agency, Berkeley for their contribution to Asthma education and research.