Asthma Research Participants Wanted

Dear World Asthma Foundation friends, the following message is from a research company interested in connecting.

Hello,

My name is Maggie, and I am with LaGrippe Research, a market research firm specializing in healthcare. We are currently inviting Parents of children aged 6-17 diagnosed with Asthma as well as teens aged 12-17 diagnosed to participate in our upcoming discussion on the topic of asthma and wanted to see if you would be interested in participating. This project’s purpose is to learn more about the adolescent patient journey with Asthma from the parent/caregiver perspective and the child. Participants must live in the USA.

There are a few ways in which you and/or your child can participate:

Parent only web assisted telephone discussion – 75-minute one-on-one call + 20-minute pre-task = $175

Paired webcam interview to include both you and your child – 90 minutes + 20-minute pre-task each = $300

For children ages 12-17 – 90-minute webcam mini focus group + 20-minute pre-task $150

If this sounds like something you might be interested in, please fill out our preliminary questions online here: https://www.surveymonkey.com/r/9DY7TRR

Once this is done, we will call you to go over a few additional items, as well as discuss which format you and/or your child which to participate in.

If you have any questions, please contact Maggie at 847-373-4104 or email maggie@lagripperesearch.com

Maggie Barber
Director
847-373-4104
www.lagripperesearch.com

A Critical Window In Early Life for Microbiome and Asthma

disruption of the microbiome in the gut and lung. Image by Clker-Free-Vector-Images from Pixabay

It may seem strange, but disruption of the gut and lung microbiomes, (microorganisms found in a specific environment) is deeply rooted in the Asthma conundrum according to a growing number of medical researchers. There is a critical window in early life that affects the life a baby will live.

Disruption of the Microbiome in the Gut and Lung link to Asthma?

Word from the editor: This is part of a series of articles on the Microbiome and Asthma. The World Asthma Foundation, dedicated to Defeating Asthma aims to unpack a variety of issues including the clinical evidence that connects the Microbiome and Asthma while describing the mechanisms of this disease

This disruption referred to as “Dysbiosis” by medical experts is an imbalance between the types of organism present in a person’s natural microflora, especially that of the gut, thought to contribute to a range of conditions of ill health, including asthma.

Quote

Researchers at the Interuniversity Messerli Research Institute, Medical University Vienna and the Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University also located in Vienna, Austria have published:

* What causes dysbiosis?

Dysbiosis of the gut and lung microbiome may lead to increased severity of asthmatic symptoms, including airway inflammation
* Treatment with probiotics can reduce inflammation and improve asthma control
* Gut dysbiosis increases intestinal permeability which allows inflammatory molecules to enter the blood stream – this triggers an immune response that leads to chronic low-grade systemic inflammation
* Probiotic administration reduces levels of proinflammatory cytokines in circulation by increasing production of anti-inflammatory cytokines such as IL-10 and IL-22 from T regulatory cells (Tregs) within the gastrointestinal tract* There are many different types of bacteria found in both the gut and lungs – each has its own set effects on health; some promote immunity while others promote allergy responses or other inflammatory conditions like asthma

Key Findings

  • humans are mostly microbial (in terms of numbers of cells and genes)
  • immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs
  • microbiome status affects early immune education and risk of NCDs
  • microbiome status affects the risk of certain infections.

Critical Window in Early Life

  • The lungs are not sterile, as doctors once thought
  • Disruption in gut and lung microbiomes can lead to asthma
  • Probiotics can reverse dysbiosis and reduce inflammation
  • There is a critical window in early life that points to whole-of-life

What You Need to Know

  1. The gut microbiome is a key player in asthma
  2. Dysbiosis of the gut and lung microbiome may lead to severity of asthma symptoms
  3. Probiotics can reduce inflammation and improve asthma control
  4. Gut dysbiosis allows inflammatory molecules into the bloodstream, triggering immune response
  5. Probiotics reduce inflammation by increasing anti-inflammatory cytokines
  6. Some gut and lung bacteria promote immunity, others promote allergy and inflammation
  7. There is a critical window in early life

disruption of the microbiome in the gut and lung. Image by Clker-Free-Vector-Images from Pixabay
Disruption of the microbiome in the gut and lung. Image by Clker-Free-Vector-Images from Pixabay

Understanding and Managing Severe Asthma: Types, Symptoms, and Treatment

Severe asthma is a type of asthma that is difficult to control and can have a significant impact on a person’s daily life. Symptoms of severe asthma can include frequent exacerbations (attacks), high levels of asthma symptoms, and a need for high doses of medication to manage symptoms. Causes of severe asthma can include allergies, exposure to environmental triggers, and genetics. Treatment for severe asthma typically includes a combination of long-term control medications, such as inhaled corticosteroids and bronchodilators, as well as quick-relief medications to be taken during exacerbations. In some cases, additional treatments such as biologic medications or immunomodulators may be needed to manage symptoms.

Types of severe Asthma

There are several subtypes of severe asthma that can be characterized based on specific symptoms and causes. These include:

It’s important to note that some people may have characteristics of more than one subtype of severe asthma. It’s important to work with a healthcare professional to identify your specific subtype of asthma and develop a treatment plan that works for you.

Allergic Asthma

Allergic asthma is a subtype of severe asthma that is caused by an allergic reaction to a specific trigger, such as dust mites, mold, animal dander, pollen, or certain foods. The allergens cause the immune system to overreact and release chemicals, such as histamine, which can lead to inflammation and narrowing of the airways.

  1. Allergic asthma: characterized by an allergic reaction to a specific trigger, such as dust mites, mold, or pet dander.
  2. Non-allergic asthma: characterized by symptoms that are not caused by an allergic reaction, but rather by triggers such as viral infections, cold air, or exercise.
  3. Aspirin-exacerbated respiratory disease (AERD): characterized by severe asthma symptoms that are triggered by the use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs)
  4. Obesity-related asthma: characterized by asthma symptoms that are made worse by being overweight or obese.
  5. Occupational asthma: characterized by symptoms caused by exposure to specific triggers in the workplace, such as chemicals or dusts.
  6. Bronchial thermoplasty: characterized by symptoms caused by structural changes in the airways, such as thickening of the muscle layers that can make it harder to breathe.
  7. Eosinophilic asthma: characterized by a high number of white blood cells called eosinophils in the airways.

Symptoms of allergic asthma can include:

  • Shortness of breath
  • Wheezing
  • Chest tightness
  • Coughing, especially at night or early in the morning
  • Difficulty breathing, especially during physical activity
  • Rapid breathing

Allergic asthma is diagnosed through a combination of medical history, physical examination, and laboratory tests such as skin prick test or blood test (specific IgE) to determine the specific allergens to which an individual is sensitive.

Treatment for allergic asthma typically includes:

  • Avoiding exposure to allergens as much as possible
  • Long-term control medications, such as inhaled corticosteroids and bronchodilators
  • Quick-relief medications to be taken during exacerbations, such as short-acting bronchodilators
  • Allergen-specific immunotherapy (allergy shots) to help reduce sensitivity to specific allergens over time.

It’s important to note that many people with allergic asthma also have other allergic conditions, such as hay fever, eczema, or hives. They may have benefit from a comprehensive allergy management plan, including allergy testing and immunotherapy.

Non allergic asthma

Non-allergic asthma is a subtype of severe asthma that is not caused by an allergic reaction, but rather by other triggers such as viral infections, cold air, exercise, stress, or exposure to certain chemicals or pollutants. The exact cause of non-allergic asthma is not known, but it is thought to be related to changes in the airways that make them more sensitive to certain triggers.

Symptoms of non-allergic asthma can include:

  • Shortness of breath
  • Wheezing
  • Chest tightness
  • Coughing, especially at night or early in the morning
  • Difficulty breathing, especially during physical activity
  • Rapid breathing

Non-allergic asthma is diagnosed through a combination of medical history, physical examination, and laboratory tests such as pulmonary function test, to rule out other causes of asthma like infections or structural changes.

Treatment for non-allergic asthma typically includes:

  • Identifying and avoiding triggers as much as possible
  • Long-term control medications, such as inhaled corticosteroids and bronchodilators
  • Quick-relief medications to be taken during exacerbations, such as short-acting bronchodilators
  • Monitoring of symptoms and lung function regularly

It’s important to note that non-allergic asthma and allergic asthma can have similar symptoms and the distinction between the two subtypes can be difficult. A healthcare professional will work with you to identify the specific triggers of your asthma and create an individualized treatment plan.

Mucus Plugs and Asthma

Mucus plugs, also known as bronchial plugs, can be a complication of asthma. Mucus plugs are clumps of thick, sticky mucus that can block the airways and make it harder to breathe. They can form in the airways of people with asthma as a result of inflammation and increased mucus production in the lungs.

Symptoms of mucus plugs in asthma can include:

  • Shortness of breath
  • Wheezing
  • Chest tightness
  • Coughing, especially at night or early in the morning
  • Difficulty breathing, especially during physical activity
  • Rapid breathing
  • Wet or gurgling sounds when breathing
  • Increased mucus production and difficulty clearing mucus from the lungs

Mucus plugs can be caused by a number of factors, including exposure to triggers such as allergens, viral infections, or pollutants, as well as by changes in the airways that make them more sensitive to certain triggers.

Treatment for mucus plugs in asthma typically includes:

If you have asthma and are experiencing symptoms of mucus plugs, it’s important to speak with your healthcare professional to develop an individualized treatment plan. In some cases, additional treatments such as biologic medications or immunomodulators may be needed to manage symptoms.

Wheezing and Severe Asthma

Wheezing is a common symptom of severe asthma, as well as other types of asthma. It is a whistling or whistling sound that can be heard when breathing, especially during exhalation. Wheezing is caused by narrowed or obstructed airways, which can make it harder to breathe.

In severe asthma, wheezing can be a sign of increased inflammation and narrowing of the airways, which can lead to difficulty breathing and increased risk of exacerbations. The increased airflow resistance leads to increased air movement velocity, generating the wheezing sound.

Symptoms of severe asthma can include:

  • Frequent exacerbations (attacks)
  • High levels of asthma symptoms, such as shortness of breath, chest tightness, and coughing
  • A need for high doses of medication to manage symptoms
  • Increased risk of hospitalization
  • Difficulty with daily activities and impairment of quality of life

Treatment for severe asthma typically includes a combination of long-term control medications, such as inhaled corticosteroids and bronchodilators, as well as quick-relief medications to be taken during exacerbations. In some cases, additional treatments such as biologic medications or immunomodulators may be needed to manage symptoms.

It’s important to work closely with a healthcare professional to develop an individualized treatment plan for severe asthma. This may include regular monitoring of symptoms and lung function, as well as a plan to manage exacerbations and prevent future attacks.

  • Identifying and avoiding triggers as much as possible
  • Long-term control medications, such as inhaled corticosteroids and bronchodilators
  • Quick-relief medications to be taken during exacerbations, such as short-acting bronchodilators
  • Chest physical therapy, such as chest clapping and vibration, to help remove mucus from the lungs
  • Monitoring of symptoms and lung function regularly

Food Dye and Inflamation

Common food dye can trigger inflammatory processes, say university researchers

A recent university study funded by the Canadian Institutes of Health Research reflects that long-term consumption of Allura Red food dye can be a potential trigger of inflammatory bowel diseases (IBDs) and potentially other inflammatory diseases processes as well.

Researchers using experimental animal models of IBD found that continual exposure to Allura Red AC harms gut health and promotes inflammation. Researchers using experimental animal models of IBD found that continual exposure to Allura Red AC harms gut health and promotes inflammation.

‘This further understanding will benefit Asthmatics as well,’ said Alan Gray, Director at the World Asthma Foundation . The human gastrointestinal (GI) tract is home to a diverse ecosystem of microbes, known collectively as the microbiota. Among its many roles, the gut microbiota regulates the immune system and protects against harmful pathogens. In fact, the largest part of the immune system, the gut-associated lymphoid tissue, is found in the gut. This network of immune cells and tissues interacts closely with the gut microbiota, influencing inflammation throughout the body including the lungs.

The dye directly disrupts gut barrier function and increases the production of serotonin, a hormone/neurotransmitter found in the gut, which subsequently alters gut microbiota composition leading to increased susceptibility to colitis.

Khan said Allura Red (also called FD&C Red 40 and Food Red 17), is a common ingredient in candies, soft drinks, dairy products and some cereals. The dye is used to add colour and texture to foodstuffs, often to attract children.

The use of synthetic food dyes such as Allura Red has increased significantly over the last several decades, but there has been little earlier study of these dyes’ effects on gut health. Khan and his team published their findings in Nature Communications. Yun Han (Eric) Kwon, who recently completed PhD in Khan’s laboratory, is first author.

“This study demonstrates significant harmful effects of Allura Red on gut health and identifies gut serotonin as a critical factor mediating these effects. These findings have important implication in the prevention and management of gut inflammation,” said Khan, the study’s senior author, a professor of the Department of Pathology and Molecular Medicine and a principal investigator of Farncombe Family Digestive Health Research Institute.

“What we have found is striking and alarming, as this common synthetic food dye is a possible dietary trigger for IBDs. This research is a significant advance in alerting the public on the potential harms of food dyes that we consume daily,” he said.

“The literature suggests that the consumption of Allura Red also affects certain allergies, immune disorders and behavioural problems in children, such as attention deficit hyperactivity disorder.”

Khan said that IBDs are serious chronic inflammatory conditions of the human bowel that affect millions of people worldwide. While their exact causes are still not fully understood, studies have shown that dysregulated immune responses, genetic factors, gut microbiota imbalances, and environmental factors can trigger these conditions.

In recent years there has been significant progress in identifying susceptibility genes and understanding the role of the immune system and host microbiota in the pathogenesis of IBDs. However, similar advances in defining environmental risk factors have lagged, he said.

Khan said that environmental triggers for IBDs include the typical Western diet, which includes processed fats, red and processed meats, sugar and a lack of fibre. He added that the Western diet and processed food also includes large amounts of various additives and dyes.

He added that the study suggests a link between a commonly used food dye and IBDs and warrants further exploration between food dyes and IBDs at experimental, epidemiological and clinical levels.

World Asthma Day Summary

On the day after World Asthma Day, May 3, 2022, we scanned the globe to find a statement that best sums up the current state of affairs regarding Asthma.

Kudos to tbe U.S National Institute of Environmental Health NIH Statement on World Asthma Day 2022: Toward Improved Asthma Care

Good enough of summary that we want to publish this in its entirety.

Asthma is a serious lung disease; causes chest tightness, wheezing, and coughing; can often be controlled with proper treatment.

Today (May 3, 2022) on World Asthma Day, the National Institutes of Health reaffirms its commitment to biomedical research aimed at preventing the onset of asthma, understanding its underlying causes, and improving the treatment of it. This chronic airway disease, which is characterized by periodic worsening of inflammation that can make it hard to breathe, affects more than 25 million people in the United States, including more than 5 million children. Left untreated, it can be life-threatening.

While scientists have made substantial progress in understanding asthma diagnosis, management, and treatment, therapies to permanently improve breathing for those who suffer from asthma remain elusive. Researchers around the globe are working steadily toward this goal while they seek to better understand and find new ways to manage the disease. They also are continuing research on the underlying causes of disparities in the incidence, care, and prevention of the disease. On the heels of recently updated management and treatment guidelines, researchers anticipate a brighter future for people living with asthma.

Three NIH institutes primarily support and conduct studies on asthma — the National Heart, Lung, and Blood Institute (NHLBI); the National Institute of Allergy and Infectious Diseases (NIAID); and the National Institute of Environmental Health Sciences (NIEHS). Other NIH Institutes and Centers also support and conduct asthma research. NIH scientists and grantees made important advances in understanding, treating, and managing asthma in 2021, which are briefly highlighted as follows:

Asthma and COVID-19

An NHLBI-funded study showed that during the pandemic, asthma attacks, also known as asthma exacerbations, significantly decreased in a large group of children and adolescents, compared to the year before the pandemic. The study also found that telehealth visits among these patients increased dramatically during this time. The study included nearly 4,000 participants aged 5-17 years with a prior diagnosis of asthma. Researchers believe a better understanding of the factors that contributed to these improved outcomes could lead to better asthma control in all children and adolescents, as researchers noted no racial or ethnic differences in health outcomes in this population.

A NIAID-funded study found that asthma does not increase the risk of becoming infected with SARS-CoV-2, the virus that causes COVID-19. This finding came from a six-month household survey of more than 4,000 children and adults conducted between May 2020 and February 2021.

Asthma Disparities

Researchers have known for decades that social determinants of health – conditions like housing, neighborhood, education, income, and healthcare access – can affect the quality of life and asthma-related health outcomes of people living with the disease. NIH scientists are now reporting new advances in understanding the relationship between social determinants of health and asthma.

Black and Hispanic children who live in low-income urban environments in the United States are at particularly high risk for asthma attacks. These children tend to be underrepresented in large trials of new biologic therapies for asthma.

In a recent NIAID-supported clinical trial, the monoclonal antibody mepolizumab decreased asthma attacks by 27% in Black and Hispanic children and adolescents who have a form of severe asthma, are prone to asthma attacks, and live in low-income urban neighborhoods.

In one study, NHLBI-funded investigators demonstrated the importance of housing interventions in improving the health of children with asthma. Poor quality housing is associated with a high level of asthma triggers – including mold, cockroach, mouse, and dust mite allergens – that can pose a health threat to children with asthma. The study showed the feasibility of using targeted interventions – including better pest management, improved ventilation, and moisture reduction – to achieve healthy housing. It showed that such interventions can result in reduced symptoms and hospitalizations due to asthma.

Environmental Exposures and Asthma

Researchers have known for years that asthma can be triggered by substances in the indoor and outdoor environment. New research shows that exposure to some asthma triggers might even occur before birth.

In an NIH-supported study that included grant support from NIEHS and the NHLBI, researchers reported that prenatal exposure to tiny air pollution particles significantly increased the risk for developing asthma in children. The study, which analyzed data from two different study cohorts, focused on a group of mothers and their children, mostly Black or Hispanic, in the Boston area who lived near major roadways with heavy traffic. It found that more than 18% of the children who were exposed to high levels of these so-called ultrafine particles in the womb developed asthma in their preschool years, compared to 7% of children overall in the United States.

An NIEHS clinical study will assess how environmental factors affect disease progression in non-smoking adults who have moderate or severe asthma. The study will focus on the microbiological and genetic factors associated with atopic asthma, also known as allergic asthma, which is triggered by pollen, dust mites, and other allergens. A better understanding of this data might lead to improved treatments for people with this type of asthma, researchers say.

Climate Change and Asthma

Studies have shown that climate change can increase air pollutants such as ground-level ozone, fine particulates, wildfire smoke, and dust, and that these pollutants can exacerbate asthma. Climate change can also affect the production, distribution, and severity of airborne allergens.

NIEHS, NHLBI, and other NIH institutes and centers are leading the NIH Climate Change and Health Initiative. This is a cross-cutting NIH effort to reduce health threats such as asthma that can develop or worsen because of climate change. The initiative will look at these threats across the lifespan and find ways to build health resilience in individuals, communities, and nations around the world. A strategic framework for the Initiative will help guide NIH investments in this area.

An NIEHS-funded study provides examples of how extreme weather events can affect asthma outcomes. For example, as heat waves and droughts become more frequent and prolonged, the risk of large wildfires will likely increase, resulting in poor air quality that makes it more difficult to control asthma. Other climate-change events can lead to longer and more intense pollen seasons, while mold and dampness in homes may cause asthma to develop or worsen preexisting cases.

About the National Institute of Allergy and Infectious Diseases (NIAID): NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Heart, Lung, and Blood Institute (NHLBI): NHLBI is the global leader in conducting and supporting research in heart, lung, and blood diseases and sleep disorders that advances scientific knowledge, improves public health, and saves lives. For more information, visit www.nhlbi.nih.gov. For additional information about NHLBI’s asthma resources, visit https://www.nhlbi.nih.gov/BreatheBetter.

About the National Institute of Environmental Health Sciences (NIEHS): NIEHS supports research to understand the effects of the environment on human health and is part of the National Institutes of Health. For more information on NIEHS or environmental health topics, visit

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.