The World Asthma Foundation Announces Speakers for Microbiome First Summit

On this World Asthma Day, May 3, 2002, The Microbiome First – Pathway to Sustainable Healthcare Summit organization committee invites healthcare professionals, non-communicable disease community leaders, and stakeholders to participate in the inaugural Microbiome First Summit, a virtual event taking place online at MicrobiomeFirst.org this May, 17-19, 2022. FREE to participants.

For detailed information and to register, visit: https://microbiomefirst.org/

The event, Microbiome First – Pathway to Sustainable Healthcare Summit, kicks off the inaugural event underwritten and moderated by the
World Asthma Foundation (WAF), which is pleased to announce the
following speakers:

Event Keynote
RODNEY DIETERT, PHD
Cornell University Professor Emeritus
Ithaca, NY, USA
Author of The Human Superorganism.
Keynote: “Big Picture View of Our Tiny Microbes”

Researcher Sessions
MARIE-CLAIRE ARRIETA, PHD
Associate Professor, departments of Physiology, Pharmacology, and Pediatrics, University of Calgary
Calgary AB, CANADA
Session: “The early-life mycobiome in immune and metabolic development”

JAEYUN SUNG, PHD
Assistant Professor, Microbiome Program, Center for Individualized Medicine, Mayo Clinic.
Rochester, MN, USA
Session: “A predictive index for health status using species-level gut microbiome profiling”

KATRINE L. WHITESON, PHD
Assistant Professor, Molecular Biology and Biochemistry School of Biological Sciences
Associate Director, UCI Microbiome Initiative
Irvine, CA, USA
Session: “High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids”

LISA AZIZ-ZADEH, PHD
Cognitive neuroscientist; Expert in brain imaging, autism, body cognition
Associate Professor in the USC Chan Division of Occupational Science and Occupational Therapy
Los Angeles, CA, USA
Session: “Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder”

MARTIN KRIEGEL, MD, PHD
Chief of Rheumatology and Clinical Immunology at University Hospital of Münster
GERMANY
Associate Professor Adjunct of Immunobiology at Yale School of Medicine.
Session: “Dietary Resistant Starch Effects on Gut Pathobiont Translocation and Systemic Autoimmunity”

ERICA & JUSTIN SONNENBURG, PHD
Senior research scientist and Associate Professor in the Department of Microbiology and Immunology at the Stanford University School of Medicine.
Palo Alto, CA, USA
Session: “Gut-microbiota-targeted diets modulate human immune status”

EMMA HAMILTON-WILLIAMS, PHD
Associate Professor
Principal Research Fellow
The University of Queensland Diamantina Institute
Faculty of Medicine
The University of Queensland
Translational Research Institute
Woolloongabba, QLD, AUSTRALIA
Session: “Metabolite-based Dietary Supplementation in Human Type 1 Diabetes is associated with Microbiota and Immune modulation”

ANDRES CUBILLOS-RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science at Massachusetts Institute of Technology
Cambridge, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

EMERAN A MAYER, MD
Gastroenterologist, Neuroscientist, Distinguished Research Professor
Department of Medicine, UCLA David Geffen School of Medicine
Executive Director, G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA
Founding Director, UCLA Brain Gut Microbiome Center.
Los Angeles, CA, USA
Session: “The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications”

BENOIT CHASSAING, PHD
Principal Investigator, Chassaing Lab
Associate professor, French National Institute of Health and Medical Research.
Paris, FRANCE
Session: “Ubiquitous food additive and microbiota and intestinal environment”

SEI WON LEE, MD, PHD
Associate Professor
College of Medicine, University of Ulsan
Department of Pulmonary and Critical Care, Asan Medical Center
Seoul, KOREA
Session: “The Therapeutic Application of Gut-Lung Axis in Chronic Respiratory Disease”

PATRICIA MACCHIAVERNI, PHD
Clinical and translational researcher
Research Fellow, The University of Western Australia
Perth, WA, AUSTRALIA
Honorary Research Associate, Telethon Kids Institute.
Session:House Dust Mite Shedding in Human Milk: a Neglected Cause of Allergy Susceptibility?”

LIEKE VAN DEN ELSEN, PHD
Research Fellow, The University of Western Australia, Australia
Honorary Research Associate, Telethon Kids Institute.
Perth, WA, AUSTRALIA
Session: “Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention”

PAUL TURNER, PHD
Rachel Carson Professor of Ecology and Evolutionary Biology, Yale University
Microbiology faculty member, Yale School of Medicine.
New Haven, CT, USA
Session: “New Yale Center to Advance Phage Research, Understanding, Treatments, Training, Education”

ANDRES CUBILLOS- RUIZ, PHD
Scientist, Wyss Institute of Harvard University and Institute of Medical Engineering and Science of Massachusetts Institute of Technology MIT
Boston, MA, USA
Session: “Protecting the Gut Microbiota from Antibiotics with Engineered Live Biotherapeutics”

CLAUDIA S. MILLER, MD, MS
Emeritus Professor, Allergy/Immunology and Environmental Health University of Texas San Antonio, TX, USA
Session: “Toxicant-Induced Lost of Tolerance for Chemicals, Foods and Drugs: a Global Phenomenon”

Media Supporter Content
TONI HARTMAN
PRINCIPAL
Microbiome Courses
London, England UK
Session “Educating Parents About ‘Seeding And Feeding’ A Baby’s Microbiome”

Summit Details:

The goal of the Microbiome First – Sustainable Healthcare Summit is to
improve quality of life at reduced cost by addressing the microbiome
first, as recent research shows that all of these non-communicable diseases have a relationship to the microbiome.

For additional information visit https://microbiomefirst.org/ or on Twitter at @MicrobiomeFirst https://twitter.com/MicrobiomeFirst

Bisphenol A or BPA in Pregnancy and Asthma Study

The Barcelona Institute for Global Health supported study concludes suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.

Study Background

In utero, (before birth) exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only.

Study Objectives

There is growing concern over the role of chemical pollutants on early life origins of respiratory diseases (Gascon et al., 2013, Vrijheid et al., 2016, Casas and Gascon, 2020, Abellan and Casas, 2021), specifically on bisphenols due to their large production worldwide (CHEMTrust, 2018) and its widespread exposure to human populations (Calafat et al., 2008, Haug et al., 2018). Bisphenol A (BPA) is the most commonly used bisphenol. It is present in polycarbonate plastics and epoxy resins, used in many consumer products, and diet is the main source of exposure (Liao and Kannan, 2013). In 2017, the European Chemical Agency considered BPA as a “substance of very high concern” (Calafat et al., 2008, Agency and Bisfenol, 2017). Consequently, BPA production is restricted in some countries, which has resulted in the emergence of substitutes such as bisphenol F (BPF) and bisphenol S (BPS), with suspected similar toxicity (Lehmler et al., 2018, Rochester and Bolden, 2015). Bisphenols can cross the placenta and are also found in breastmilk, which results in exposure to foetuses and newborns (Lee et al., 2018). To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex.

Methods

We included 3,007 mother–child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999–2010). Between 7 and 11 years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data.

In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only.

Study Objective

To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex.

Results

Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR = 1.13, 95% CI = 1.01, 1.27) and wheeze (OR = 1.14, 95% CI = 1.01, 1.30) (p-interaction sex = 0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses.

Conclusion

This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girl

According the U.S. National Institute of Health, Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics. It is found in various products including shatterproof windows, eyewear, water bottles, and epoxy resins that coat some metal food cans, bottle tops, and water supply pipes.

How does BPA get into the body?

The primary source of exposure to BPA for most people is through the diet. While air, dust, and water are other possible sources of exposure, BPA in food and beverages accounts for the majority of daily human exposure.

Bisphenol A can leach into food from the protective internal epoxy resin coatings of canned foods and from consumer products such as polycarbonate tableware, food storage containers, water bottles, and baby bottles. The degree to which BPA leaches from polycarbonate bottles into liquid may depend more on the temperature of the liquid or bottle, than the age of the container. BPA can also be found in breast milk.

Why are people concerned about BPA?
One reason people may be concerned about BPA is because human exposure to BPA is widespread. The 2003-2004 National Health and Nutrition Examination Survey (NHANES III) conducted by the Centers for Disease Control and Prevention (CDC) found detectable levels of BPA in 93% of 2517 urine samples from people six years and older. The CDC NHANES data are considered representative of exposures in the United States. Another reason for concern, especially for parents, may be because some animal studies report effects in fetuses and newborns exposed to BPA.

If I am concerned, what can I do to prevent exposure to BPA?

Some animal studies suggest that infants and children may be the most vulnerable to the effects of BPA. Parents and caregivers can make the personal choice to reduce exposures of their infants and children to BPA:

  • Don’t microwave polycarbonate plastic food containers. Polycarbonate is strong and durable, but over time it may break down from over use at high temperatures.
    Plastic containers have recycle codes on the bottom. Some, but not all, plastics that are marked with recycle codes 3 or 7 may be made with BPA.
  • Reduce your use of canned foods.
    When possible, opt for glass, porcelain or stainless steel containers, particularly for hot food or liquids.
  • Use baby bottles that are BPA free.

There is growing concern over the role of chemical pollutants on early life origins of respiratory diseases (Gascon et al., 2013, Vrijheid et al., 2016, Casas and Gascon, 2020, Abellan and Casas, 2021), specifically on bisphenols due to their large production worldwide (CHEMTrust, 2018) and its widespread exposure to human populations (Calafat et al., 2008, Haug et al., 2018). Bisphenol A (BPA) is the most commonly used bisphenol. It is present in polycarbonate plastics and epoxy resins, used in many consumer products, and diet is the main source of exposure (Liao and Kannan, 2013). In 2017, the European Chemical Agency considered BPA as a “substance of very high concern” (Calafat et al., 2008, Agency and Bisfenol, 2017). Consequently, BPA production is restricted in some countries, which has resulted in the emergence of substitutes such as bisphenol F (BPF) and bisphenol S (BPS), with suspected similar toxicity (Lehmler et al., 2018, Rochester and Bolden, 2015). Bisphenols can cross the placenta and are also found in breastmilk, which results in exposure to foetuses and newborns (Lee et al., 2018).

Asthma Rates and Mask – Good or Bad?

65% drop in serious asthma cases due to mask-wearing Israeli hospital reports

The Times of Israel reports that the Sheba Medical, an Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing.

Here’s the 411 according to published reports:

• A study conducted by Sheba Medical Center found that the past year saw a 65 percent drop in serious asthma cases that required hospitalization.

• The drop was credited to widespread mask-wearing during the COVID-19 pandemic, which also helped decrease the spread of viruses such as the flu in the past year.

• By wearing masks, people are also less likely to suffer from seasonal allergies, as face coverings prevent pollen from flowers, trees, and grass coming into contact with the nose and mouth.

• The report follows Israel’s decision to drop the requirement to wear masks outdoors.

Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing Jerusalemites wearing face masks walk in Jerusalem on February 04, 2021.

Monoclonal Antibodies Anaphylaxis Risk For Severe Asthma Patients

Monoclonal antibodies

Most monoclonal antibodies increase the risk of anaphylaxis in severe asthma patients, according to a report published in Clinical and Translational Allergy. The study found 4 out of 5 common mAbs were associated with an increased risk of anaphylaxis. Each of the therapies had a different risk profile. One monoclonal antibody – dupilumab – exhibited a very low risk. The patients in this study were mainly young and middle-aged adults.

What You Need to Know

Monoclonal antibodies (mAbs) are a type of medication designed to work on one specific target, in contrast to conventional medications that often affect more than one site within the body. They differ from polyclonal treatments by binding specifically to a single place (an epitope) on their target protein. Monoclonal antibodies are found naturally, produced by cloned B cells called hybridomas.

For those with severe asthma, there are Clinical Safety Issues. Any severe asthmatic who experiences an anaphylactic reaction due to food or insect allergy must be made aware that the use of mAbs may cause an adverse reaction for them.

Severe asthma patients receiving monoclonal antibodies need close monitoring due to increased anaphylaxis risk, the new study found.

The report, published in Clinical and Translational Allergy, found 4 out of 5 common mAbs were associated with a heightened anaphylaxis risk, though the risk varied from therapy to therapy.

Key Takeaways

  • Monoclonal antibodies work with the immune system.
  • mAbs target cancer cells, viruses, bacteria, and other pathogens.
  • They may be beneficial in autoimmune diseases in place of other immunosuppressive agents.
  • mAbs generally prevent allergic reactions, but for some people, may cause a severe adverse reaction.
  • Regular doses of antihistamines and/or epinephrine may be used with the monoclonal antibodies.

Common monoclonal antibodies include:

– omalizumab (trade names Xolair and Omeclamox and used for allergies to asthma and insect bites)

– mepolizumab (trade name Nucala, a newer monoclonal antibody. It is used for Severe Persistent Asthma in those who have moderate to severe allergic asthma and do not respond well to conventional treatments.)

What Are Monoclonal Antibodies?

Monoclonal antibodies are secreted proteins that neutralize a pathogen or an undesirable substance. They derive from monocytes and can bind to target the protein which is responsible for activating B-cells during immune response. They function as a tool to modify the progression of disease by slowing down the symptoms of autoimmune reactions.

Monoclonal Antibodies (MAbs) function to eliminate pathogens or unwanted toxins. They may have diagnostic as well as treatment potentials in autoimmune disease-related disorders.

The World Asthma Foundation thanks the six expert researchers for their insight into how normally beneficial Monoclonal Antibodies may cause Anaphylactic reactions in severe asthmatics.

Li L, Wang Z, Cui L, Xu Y, Guan K, and Zhao B. “Anaphylactic risk related to omalizumab, benralizumab, reslizumab, mepolizumab, and dupilumab.” Published online June 3, 2021. doi:10.1002/clt2.12038

Monoclonal antibodies
Monoclonal antibodies, PR image.

New Treatment for Asthma? Airway Collagen Affects Breathing

A new study finds that manipulating the stiffness of the collagen in the airway has an effect on breathing.

The airway consists of both a conducting region (larynx, trachea, bronchi, bronchioles) where air is humidified, warmed, and cleaned and a respiratory zone where gas exchange occurs. The airway is directly and continuously exposed to both macromechanical and micromechanical forces.

Macromechanics is the study of organ-level mechanical and material properties. Intrathoracic respiratory forces, perfusion, and cough represent some of the dynamic macromechanical forces exerted on the respiratory system. As the airway is composed of heterogeneous components (chondrocytes, epithelium, endothelium, muscle, extracellular matrix (ECM)), these constituents can be individually quantified using micromechanics.

Micromechanical properties drive the mechanotransduction in the airway, driving cell–cell and cell–matrix interactions [1].

Collagen is most abundant component in the airway extracellular matrix. It is also the primary component that determines mechanical properties of the airway. This discovery around the structure of airway cells could lead to a new treatment for asthma.

What You Need to Know

Abnormal airway collagen deposition is associated with the pathogenesis and progression of airway disease according to the researchers, Lumei Liu, Brooke Stephens, Maxwell Bergman, Anne May, and Tendy Chiang, in Columbus, Ohio.

Liu is with the Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital in Columbus, OH.

Key Takeaways

  • collagen has a major role in airway mechanics
  • macro- and micro-scale approaches can quantify airway mechanics
  • collagen deposition affects pathologic changes in airway diseases.

The World Asthma Foundation would like to thank these experts for their research for their understanding how collagen affects healthy airway tissue mechanics is essential. The impact of abnormal collagen deposition and tissue stiffness has been an area of interest in pulmonary diseases such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease. The researchers seek to provide biomechanical clues for targeted therapies and regenerative medicine to treat airway pathology and address airway defects.

airway collagen affects breathing. Image by OpenClipart-Vectors from Pixabay
Airway collagen affects breathing. Image by OpenClipart-Vectors from Pixabay