Expression of adenosine receptors in monocytes from patients with bronchial asthma.

Related Articles

Expression of adenosine receptors in monocytes from patients with bronchial asthma.

Biochem Biophys Res Commun. 2015 Jul 29;

Authors: Yuryeva K, Saltykova I, Ogorodova L, Kirillova N, Kulikov E, Korotkaya E, Iakovleva Y, Feoktistov I, Sazonov A, Ryzhov S

Abstract
Adenosine is generated from adenosine triphosphate, which is released by stressed and damaged cells. Adenosine levels are significantly increased in patients with bronchial asthma (BA) and mediate mast cell degranulation and bronchoconstriction. Over the last decade, increasing evidence has shown that adenosine can modulate the innate immune response during monocytes differentiation towards mature myeloid cells. These adenosine-differentiated myeloid cells, characterized by co-expression of monocytes/macrophages and dendritic cell markers such as CD14 and CD209, produce high levels of pro-inflammatory cytokines, thus contributing to the pathogenesis of BA and chronic obstructive pulmonary disease. We found that expression of ADORA2A and ADORA2B are increased in monocytes obtained from patients with BA, and are associated with the generation of CD14(pos)CD209(pos) pro-inflammatory cells. A positive correlation between expression of ADORA2B and IL-6 was identified in human monocytes and may explain the increased expression of IL-6 mRNA in asthmatics. Taken together, our results suggest that monocyte-specific expression of A2 adenosine receptors plays an important role in pro-inflammatory activation of human monocytes, thus contributing to the progression of asthma.

PMID: 26232643 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

A2B Adenosine Receptor Expression by Myeloid Cells Is Proinflammatory in Murine Allergic-Airway Inflammation.

A2B Adenosine Receptor Expression by Myeloid Cells Is Proinflammatory in Murine Allergic-Airway Inflammation.

J Immunol. 2012 Sep 5;

Authors: Belikoff BG, Vaickus LJ, Sitkovsky M, Remick DG

Abstract
Asthma is a chronic condition with high morbidity and healthcare costs, and cockroach allergens are an established cause of urban pediatric asthma. A better understanding of cell types involved in promoting lung inflammation could provide new targets for the treatment of chronic pulmonary disease. Because of its role in regulating myeloid cell-dependent inflammatory processes, we examined A(2B) R expression by myeloid cells in a cockroach allergen model of murine asthma-like pulmonary inflammation. Both systemic and myeloid tissue-specific A(2B) R deletion significantly decreased pulmonary inflammatory cell recruitment, airway mucin production, and proinflammatory cytokine secretion after final allergen challenge in sensitized mice. A(2B) R deficiency resulted in a dramatic reduction on Th2-type airways responses with decreased pulmonary eosinophilia without augmenting neutrophilia, and decreased lung IL-4, IL-5, and IL-13 production. Chemokine analysis demonstrated that eotaxin 1 and 2 secretion in response to repeated allergen challenge is myeloid cell A(2B) R dependent. In contrast, there were no differences in the levels of the CXC chemokines keratinocyte-derived chemokine and MIP-2 in the myeloid cell A(2B) R-deficient mice, strengthening A(2B) R involvement in the development of Th2-type airways inflammation. Proinflammatory TNF-?, IFN-?, and IL-17 secretion were also reduced in systemic and myeloid tissue-specific A(2B) R deletion mouse lines. Our results demonstrate Th2-type predominance for A(2B) R expression by myeloid cells as a mechanism of development of asthma-like pulmonary inflammation.

PMID: 22956582 [PubMed – as supplied by publisher]

View full post on pubmed: asthma