Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells.

Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells.

Adv Exp Med Biol. 2011;704:731-47

Authors: Wang YX, Zheng YM

Multiple canonical or classic transient receptor potential (TRPC) molecules are expressed in animal and human airway smooth muscle cells (SMCs). TRPC3, but not TRPC1, is a major molecular component of native non-selective cation channels (NSCCs) to contribute to the resting [Ca(2+)](i) and muscarinic increase in [Ca(2+)](i) in freshly isolated airway SMCs. TRPC3-encoded NSCCs are significantly increased in expression and activity in airway SMCs from ovalbumin-sensitized/challenged “asthmatic” mice, whereas TRPC1-encoded channel activity, but not its expression, is largely augmented. The upregulated TRPC3- and TRPC1-encoded NSCC activity both mediate “asthmatic” membrane depolarization in airway SMCs. Supportively, tumor necrosis factor-? (TNF?), an important asthma mediator, increases TRPC3 expression, and TRPC3 gene silencing inhibits TNF?-mediated augmentation of acetylcholine-evoked increase in [Ca(2+)](i) in passaged airway SMCs. In contrast, TRPC6 gene silencing has no effect on 1-oleoyl-2-acetyl-sn-glycerol (OAG)-evoked increase in [Ca(2+)](i) in primary isolated cells. These findings provide compelling information indicating that TRPC3-encoded NSCCs are important for physiological and pathological cellular responses in airway SMCs. However, continual studies are necessary to further determine whether, which, and how TRPC-encoded channels are involved in cellular responses in normal and diseased (e.g., asthmatic) airway SMCs.

PMID: 21290324 [PubMed – in process]

View full post on pubmed: asthma

Gene Expression Patterns of Th2 Inflammation and Intercellular Communication in Asthmatic Airways.

Gene Expression Patterns of Th2 Inflammation and Intercellular Communication in Asthmatic Airways.

J Immunol. 2010 Dec 27;

Authors: Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, Fedorowicz G, Modrusan Z, Fahy JV, Woodruff PG, Arron JR

Asthma is canonically thought of as a disorder of excessive Th2-driven inflammation in the airway, although recent studies have described heterogeneity with respect to asthma pathophysiology. We have previously described distinct phenotypes of asthma based on the presence or absence of a three-gene “Th2 signature” in bronchial epithelium, which differ in terms of eosinophilic inflammation, mucin composition, subepithelial fibrosis, and corticosteroid responsiveness. In the present analysis, we sought to describe Th2 inflammation in human asthmatic airways quantitatively with respect to known mediators of inflammation and intercellular communication. Using whole-genome microarray and quantitative real-time PCR analysis of endobronchial biopsies from 27 mild-to-moderate asthmatics and 13 healthy controls with associated clinical and demographic data, we found that asthmatic Th2 inflammation is expressed over a variable continuum, correlating significantly with local and systemic measures of allergy and eosinophilia. We evaluated a composite metric describing 79 coexpressed genes associated with Th2 inflammation against the biological space comprising cytokines, chemokines, and growth factors, identifying distinctive patterns of inflammatory mediators as well as Wnt, TGF-?, and platelet-derived growth factor family members. This integrated description of the factors regulating inflammation, cell migration, and tissue remodeling in asthmatic airways has important consequences for the pathophysiological and clinical impacts of emerging asthma therapeutics targeting Th2 inflammation.

PMID: 21187436 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Allergen-Induced Coexpression of bFGF and TGF-?1 by Macrophages in a Mouse Model of Airway Remodeling: bFGF Induces Macrophage TGF-?1 Expression in vitro.

Related Articles

Allergen-Induced Coexpression of bFGF and TGF-?1 by Macrophages in a Mouse Model of Airway Remodeling: bFGF Induces Macrophage TGF-?1 Expression in vitro.

Int Arch Allergy Immunol. 2010 Nov 25;155(1):12-22

Authors: Yum HY, Cho JY, Miller M, Broide DH

Background: Basic fibroblast growth factor (bFGF) is a cytokine that is mitogenic for fibroblasts and smooth muscle and may play a role in airway remodeling in asthma. We have used a mouse model of chronic ovalbumin (OVA) allergen-induced airway remodeling to determine whether bFGF and fibroblast growth factor receptor-1 are expressed and regulated by corticosteroids in the airway, as well as to determine whether bFGF mediates expression of another proremodeling cytokine, transforming growth factor (TGF)-?1. Methods: The airway levels and localization of bFGF, FGF receptor-1 and TGF-?1 were determined by ELISA, immunohistology and image analysis in the remodeled airways of chronic OVA-challenged mice treated with either corticosteroids or diluent. In vitro cultures of bone narrow-derived macrophages were used to determine whether bFGF induced TGF-?1 expression. Results: Mice chronically challenged with OVA developed significant airway remodeling that was associated with significantly increased levels of bFGF and TGF-?1. Immunohistochemistry demonstrated significantly increased bFGF and FGF receptor-1 expression by peri- bronchial F4/80+ cells. Double-label immunofluorescence microscopy studies demonstrated that peribronchial macrophages coexpressed bFGF and TGF-?1. In vitro studies demonstrated that incubation of bone marrow-derived macrophages with bFGF induced expression of TGF-?1. Mice treated with corticosteroids and subjected to chronic OVA challenge had significantly reduced levels of bFGF, FGF receptor-1, peribronchial TGF-?1+ cells and airway remodeling. Conclusions: Overall, this study demonstrates that allergen challenge stimulates peribronchial macrophages to coexpress bFGF and TGF-?1 and that bFGF may potentiate macrophage release of TGF-?1 through autocrine and/or paracrine pathways.

PMID: 21109744 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Flagellin Induces the Expression of Thymic Stromal Lymphopoietin in Human Keratinocytes via Toll-Like Receptor 5.

Related Articles

Flagellin Induces the Expression of Thymic Stromal Lymphopoietin in Human Keratinocytes via Toll-Like Receptor 5.

Int Arch Allergy Immunol. 2010 Nov 25;155(1):31-37

Authors: Le TA, Takai T, Vu AT, Kinoshita H, Chen X, Ikeda S, Ogawa H, Okumura K

Background: Thymic stromal lymphopoietin (TSLP), highly expressed by keratinocytes in skin lesions of atopic dermatitis patients and bronchial epithelial cells in asthma, plays a key role in allergic diseases. Information on triggers for the release of TSLP in keratinocytes is still limited. Keratinocytes express Toll-like receptor (TLR) 5, the ligand for which is flagellin, the major structural protein of the flagella of Gram-negative bacteria. IL-4, IL-13 and TNF-? (Th2/TNF) are associated with allergic diseases. TGF-?, one of the ligands for the epidermal growth factor receptor, is overexpressed in keratinocytes in atopic dermatitis. We investigated the induction of TSLP expression in keratinocytes stimulated with flagellin and its modulation by the Th2/TNF cytokines and TGF-?. Methods: Primary human keratinocytes were stimulated with flagellin with or without cytokines. The TSLP released was measured by ELISA. Gene expression was analyzed by quantitative real-time PCR. Results: Stimulation of keratinocytes with flagellin induced the release of TSLP protein and upregulation of the gene expression of TSLP and other pro-inflammatory molecules. The flagellin-induced release of TSLP was enhanced by the Th2/TNF cytokines or TGF-?. Small interfering RNA-mediated knockdown of TLR5 expression suppressed the flagellin-induced TSLP gene expression. Conclusions: Flagellin induces TSLP expression in keratinocytes via TLR5 and the expression can be upregulated by a cytokine milieu with Th2/TNF or TGF-?, suggesting that exposure of barrier-defective skin to Gram-negative bacteria or environmental flagellin contributes to the initiation and/or amplification of Th2-type skin inflammation including atopic dermatitis through the induction of TSLP expression in keratinocytes.

PMID: 21109746 [PubMed – as supplied by publisher]

View full post on pubmed: asthma