Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma.

Related Articles

Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma.

Inflammation. 2016 Nov 19;

Authors: Chauhan PS, Dash D, Singh R

Abstract
Pulmonary fibrosis is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Intranasal curcumin, an anti-inflammatory molecule, has been found effective in allergic asthma. To study the effect of intranasal curcumin on airway remodeling and fibrosis in murine model of chronic asthma, BALB/c mice were sensitized to ovalbumin (OVA) and exposed to OVA aerosol (2%) from day 21 (after sensitization) for 5 weeks (twice/week). Curcumin (intranasal) was administered during the OVA aerosol challenge. Mice exposed to OVA developed inflammation dominated by eosinophils which lead to fibrosis and airway remodeling. Intranasal administration of curcumin significantly inhibited airway inflammation and pulmonary fibrosis, where MMP-9 activities were decreased along with ?-smooth muscle actin (?-SMA), MMP-9, TIMP-1, and eotaxin expressions. These results suggest that intranasal curcumin regulates airway inflammation and remodeling in chronic asthma.

PMID: 27866296 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Polymorphic Variants 279R and 668Q Augment Activity of Matrix Metalloproteinase-9 in Breath Condensates of Children with Asthma.

Polymorphic Variants 279R and 668Q Augment Activity of Matrix Metalloproteinase-9 in Breath Condensates of Children with Asthma.

Arch Immunol Ther Exp (Warsz). 2016 Jul 9;

Authors: Grzela K, Zagórska W, Krejner A, Litwiniuk M, Zawadzka-Krajewska A, Kulus M, Grzela T

Abstract
Matrix metalloproteinase (MMP)-9 is involved in pathophysiology of asthma, mainly asthma-associated airway remodeling. Exhaled breath condensates (EBC) of asthmatics contain increased amounts of MMP-9 with activity higher, than in healthy controls. The increased activity of MMP-9 may originate from its excessive production and activation, but may also result from variations in MMP-9 structure, which are determined by single nucleotide polymorphisms (SNPs). In this pilot study we aimed to assess the possible influence of two functional MMP-9 polymorphisms, Q279R and R668Q, on enzymatic activity of MMP-9, measured in EBC of asthmatic children. The concentration and activity of MMP-9 were analyzed in EBC of 20 children with allergic asthma using specific standard ELISA and novel immunoenzymatic activity assay. The SNPs of MMP-9 were assessed using real-time PCR-based genotyping test. We have found that MMP-9 concentration in breath condensates of children with stable asthma was slightly higher in ELISA, than in the activity assay. Moreover, these results and activity-to-amount ratio have revealed some relationship with a presence of specific 279R and/or 668Q MMP-9 gene variants. Our observation suggests that at least in some patients MMP-9 hyperactivity may result from genetic predisposition, determined by polymorphic variants of MMP-9 gene. Moreover, it supports previous reports postulating significance of MMP-9 in pathogenesis of asthma. However, this issue still requires further studies.

PMID: 27395373 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Chlamydophila pneumonia inhibits the corticosteroid-induced suppressions of metalloproteinase-9 and tissue inhibitor metalloproteinase-1 secretion by human peripheral blood mononuclear cells.

Chlamydophila pneumonia inhibits the corticosteroid-induced suppressions of metalloproteinase-9 and tissue inhibitor metalloproteinase-1 secretion by human peripheral blood mononuclear cells.

J Med Microbiol. 2012 Jan 26;

Authors: Park CS, Lee YS, Kwon HS, Lee TH, Kim TB, Moon KA, Yoo B, Moon HB, Cho YS

Abstract
Chlamydophila pneumoniae infection has been suggested to be associated with severe asthma characterized by persistent airway limitation, which may be related to airway remodeling. We investigated whether C. pneumoniae infection affected the secretion of metalloproteinase-9 (MMP9) and tissue inhibitor metalloproteinase-1 (TIMP1), and altered the responsiveness of inflammatory cells to corticosteroids. Human peripheral blood mononuclear cells (PBMC) were cultured in vitro in the presence or absence of C. pneumoniae. Secretion of both MMP9 and TIMP1 was strongly suppressed by dexamethasone treatment in uninfected cells. MMP9 secretion was also significantly inhibited by dexamethasone in C. pneumoniae-infected cells, but TIMP1 secretion was not; hence the MMP9 to TIMP1 ratio decreased. Interestingly, expression of human glucocorticoid receptor (GR)?, which is believed to confer resistance to corticosteroids, was enhanced by dexamethasone treatment in C. pneumoniae-infected PBMC. We conclude that C. pneumoniae infection may promote airway remodeling by decreasing the ratio of MMP9 to TIMP1 secreted by inflammatory cells, and by altering cellular responsiveness to corticosteroids.

PMID: 22282461 [PubMed – as supplied by publisher]

View full post on pubmed: asthma