A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A.

A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A.

Biosens Bioelectron. 2016 Feb 18;81:80-86

Authors: Jo H, Kim SK, Youn H, Lee H, Lee K, Jeong J, Mok J, Kim SH, Park HS, Ban C

Abstract
Interleukin-17 receptor A (IL-17RA) has been recognized as a valuable biomarker for diverse diseases, including autoimmune diseases. In this work, an electrochemical biosensor with great sensitivity and selectivity toward IL-17RA was fabricated using an IL-17RA aptamer (Kd=14.00nM) for the first time. The aptasensor was manufactured using electrodeposition of gold nanoparticles, and then quantitative detection of IL-17RA was performed based on impedimetry. The developed sensor exhibited a superior analytical performance for IL-17RA with a wide dynamic range of 10-10,000pg/mL in buffer and a detection limit of 2.13pg/mL, which is lower than that of commercially available ELISA kits. In addition, we validated the high specificity of the designed aptasensor to only IL-17RA, which showed good sensitivity even in human serum solution. Furthermore, the detection of the differentiated HL-60 cells expressing IL-17RA was successfully performed. Clinical applicability of the sensor was also demonstrated utilizing neutrophils separated from asthma patients. It is expected that the fabricated aptasensor will become an excellent diagnostic platform for IL-17RA-mediated diseases.

PMID: 26921556 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Concomitant inhibition of primary equine bronchial fibroblast proliferation and differentiation by selective ?2-adrenoceptor agonists and dexamethasone.

Related Articles

Concomitant inhibition of primary equine bronchial fibroblast proliferation and differentiation by selective ?2-adrenoceptor agonists and dexamethasone.

Eur J Pharmacol. 2014 Aug 13;

Authors: Franke J, Abraham G

Abstract
Altered airway cell proliferation plays an important role in the pathogenesis of human bronchial asthma and chronic obstructive pulmonary disease (COPD) as well as the equine recurrent airway obstruction (RAO) with consistent changes, i.e. narrowing the airway wall, explained by proliferation and differentiation of fibroblasts. In permanent cell lines, it has been suggested that ?2-adrenoceptor agonists and glucocorticoids regulate cell proliferation via the ?2-adrenoceptor pathway; indeed, no study was carried out in fresh isolated primary equine bronchial fibroblasts (EBF). We characterized the ?-adrenoceptors in EBF, and compared effects of long-acting (clenbuterol) and short-acting (salbutamol, isoproterenol) ?2-agonists and dexamethasone on proliferation, differentiation and collagen synthesis. High density (Bmax; 5037±494 sites/cell) of ?2-adrenoceptor subtype was expressed in EBF. ?2-agonists inhibited concentration-dependently EBF proliferation with potency of clenbuterol>salbutamol l» isoproterenol which was inhibited by ICI 118.551 and propranolol but not by CGP 20712A. In contrast, dexamethasone alone inhibited less EBF proliferation, but the effect was high when dexamethasone was combined with ?2-agonists. Transforming growth factor-?1 (TGF-?1) increased transformation of fibroblasts into myofibroblasts, and which was inhibited by clenbuterol and dexamethasone alone and drug combination resulted in high inhibition rate. Collagen synthesis in EBF was rather hampered by dexamethasone than by ?-agonists. Collectively, the expression of ?2-adrenoceptor subtype in EBF and the anti-proliferative effect of clenbuterol suggest that ?2-adrenoceptors are growth inhibitory and anti-fibrotic in EBF. These ?2-agonist effects in EBF were synergistically enhanced by dexamethasone, providing the additive effects of glucocorticoids to counteract airway remodelling and morbidity of asthma and RAO.

PMID: 25128704 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Therapeutic Potential of ASP3258, a Selective Phosphodiesterase 4 Inhibitor, on Chronic Eosinophilic Airway Inflammation.

Therapeutic Potential of ASP3258, a Selective Phosphodiesterase 4 Inhibitor, on Chronic Eosinophilic Airway Inflammation.

Pharmacology. 2012;90(3-4):223-32

Authors: Kobayashi M, Kubo S, Shiraki K, Iwata M, Hirano Y, Ohtsu Y, Takahashi K, Shimizu Y

Abstract
We investigated and compared the pharmacological effects of a PDE4 inhibitor ASP3258 (3-[4-(3-chlorophenyl)-1-ethyl-7-methyl-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl] propanoic acid), with those of roflumilast, the most clinically advanced PDE4 inhibitor known. ASP3258 inhibited human PDE4A, 4B, 4C, and 4D with respective IC(50) values of 0.036, 0.050, 0.45, and 0.035 nmol/l, all approximately 3-6 times more potent than roflumilast. ASP3258 inhibited LPS-induced TNF-? production and PHA-induced IL-5 production in human whole blood cells with respective IC(50) values of 110 and 100 nmol/l, both approximately 10 times less potent than roflumilast. Repeatedly administered ASP3258 and roflumilast both suppressed chronic airway eosinophilia induced by repeated exposure to ovalbumin in Brown Norway rats with respective ED(50) values of 0.092 and 0.17 mg/kg. We also evaluated the toxicological profiles of ASP3258. Although PDE4 inhibitors induce emesis by mimicking the pharmacological action of an ?(2)-adrenoceptor antagonist, repeated administration of ASP3258 (3 mg/kg) had no such inhibitory effect on rats anesthetized with ?(2) – adrenoceptor agonist. PDE4 inhibitors are also known to induce vascular injury in rats. Although repeatedly administered ASP3258 (3 and 10 mg/kg) significantly increased plasma fibrinogen, a biomarker for toxicity, 1 mg/kg of ASP3258 did not. These results suggest that ASP3258 is an attractive PDE4 inhibitor for treating chronic eosinophilic airway inflammation due to asthma.

PMID: 23038661 [PubMed – in process]

View full post on pubmed: asthma