Condition: COPD Asthma
Intervention:
Sponsor: Clalit Health Services
Recruiting – verified December 2016
View full post on ClinicalTrials.gov: asthma | Studies received in the last 14 days
Breathe Well Live Well-SM
Condition: COPD Asthma
Intervention:
Sponsor: Clalit Health Services
Recruiting – verified December 2016
View full post on ClinicalTrials.gov: asthma | Studies received in the last 14 days
Researchers identify hCRTh2 protein as possible therapeutic target for asthma
News-Medical.net Patients with asthma have chronic lung inflammation that results in sporadic narrowing of the airways and difficulty breathing. Symptoms and severity are variable among individuals; however, the cells and inflammatory factors that trigger asthmatic … |
View full post on asthma – Google News
Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses.
BMC Med Genomics. 2016;9(1):9
Authors: Troy NM, Hollams EM, Holt PG, Bosco A
Abstract
BACKGROUND: Asthma is strongly associated with allergic sensitization, but the mechanisms that determine why only a subset of atopics develop asthma are not well understood. The aim of this study was to test the hypothesis that variations in allergen-driven CD4 T cell responses are associated with susceptibility to expression of asthma symptoms.
METHODS: The study population consisted of house dust mite (HDM) sensitized atopics with current asthma (n?=?22), HDM-sensitized atopics without current asthma (n?=?26), and HDM-nonsensitized controls (n?=?24). Peripheral blood mononuclear cells from these groups were cultured in the presence or absence of HDM extract for 24 h. CD4 T cells were then isolated by immunomagnetic separation, and gene expression patterns were profiled on microarrays.
RESULTS: Differential network analysis of HDM-induced CD4 T cell responses in sensitized atopics with or without asthma unveiled a cohort of asthma-associated genes that escaped detection by more conventional data analysis techniques. These asthma-associated genes were enriched for targets of STAT6 signaling, and they were nested within a larger coexpression module comprising 406 genes. Upstream regulator analysis suggested that this module was driven primarily by IL-2, IL-4, and TNF signaling; reconstruction of the wiring diagram of the module revealed a series of hub genes involved in inflammation (IL-1B, NFkB, STAT1, STAT3), apoptosis (BCL2, MYC), and regulatory T cells (IL-2Ra, FoxP3). Finally, we identified several negative regulators of asthmatic CD4 T cell responses to allergens (e.g. IL-10, type I interferons, microRNAs, drugs, metabolites), and these represent logical candidates for therapeutic intervention.
CONCLUSION: Differential network analysis of allergen-induced CD4 T cell responses can unmask covert disease-associated genes and pin point novel therapeutic targets.
PMID: 26922672 [PubMed – as supplied by publisher]
View full post on pubmed: asthma
UAB discovery may offer new therapeutic approaches to asthma
News-Medical.net University of Alabama at Birmingham researchers have found a previously unknown step in the pathway that leads to asthma, a discovery that may offer new therapeutic approaches to this incurable disease. Asthma affects more than 25 million people in the … |
View full post on asthma – Google News
Lung Disease News |
New Therapeutic Program Leader to Take Over Asthma, Other Conditions at Knopp …
Lung Disease News Dexpramipexole is an oral, small molecule medicine candidate, currently in development for the treatment of asthma, amyotrophic lateral sclerosis (ALS), and other conditions associated with eosinophils — white blood cells of the immune system … |
View full post on asthma – Google News