Cigarette Smoke Induces uPAR in Vivo and Isoforms Selectively Contribute to Bronchial Epithelial Phenotype.

Related Articles

Cigarette Smoke Induces uPAR in Vivo and Isoforms Selectively Contribute to Bronchial Epithelial Phenotype.

Am J Respir Cell Mol Biol. 2014 Dec 9;

Authors: Portelli MA, Stewart CE, Hall IP, Brightling CE, Sayers I

Abstract
The urokinase plasminogen activator receptor (uPAR) gene (PLAUR) has been identified as an asthma susceptibility gene, with polymorphisms within that gene being associated with baseline lung function, lung function decline and lung function in a smoking population. Soluble cleaved uPAR (scuPAR), a molecule identified as a marker of increased morbidity and mortality in a number of diseases, has itself been shown to be elevated in the airways of asthma and COPD patients. However, the functionality of soluble receptor isoforms and their relationship with an important initiator for obstructive lung disease, cigarette smoke, remains undefined. In this study, we set out to determine the effect of cigarette smoke on soluble uPAR isoforms, its regulatory pathway and the resultant effect on bronchial epithelial cell function. We identified a positive association between cigarette pack/years and uPAR expression in the airway bronchial epithelium of biopsies from asthma patients (n=27, P=0.0485). In vitro, cigarette smoke promoted cleavage of uPAR from the surface of bronchial epithelial cells (1.5X induction, P<0.0001) and induced the soluble spliced isoform through changes in mRNA expression (~2X change, P<0.001), driven by loss of endogenous 3`UTR suppression. Elevated expression of the soluble isoforms resulted in a pro-remodelling cell phenotype, characterised by increased proliferation and MMP-9 expression in primary bronchial epithelial cells. This suggests that cigarette smoke elevates soluble receptor isoforms in bronchial epithelial cells through direct (cleavage), and indirect (mRNA expression) means. These findings provide further insight into how cigarette smoke may influence changes in the airways of importance to airway remodelling and obstructive lung disease progression.

PMID: 25490122 [PubMed – as supplied by publisher]

View full post on pubmed: asthma

Multiple In Vitro and In Vivo Regulatory Effects of Budesonide in CD4+ T Lymphocyte Subpopulations of Allergic Asthmatics.

Multiple In Vitro and In Vivo Regulatory Effects of Budesonide in CD4+ T Lymphocyte Subpopulations of Allergic Asthmatics.

PLoS One. 2012;7(12):e48816

Authors: Pace E, Di Sano C, La Grutta S, Ferraro M, Albeggiani G, Liotta G, Di Vincenzo S, Uasuf CG, Bousquet J, Gjomarkaj M

Abstract
BACKGROUND: Increased activation and increased survival of T lymphocytes characterise bronchial asthma.
OBJECTIVES: In this study the effect of budesonide on T cell survival, on inducible co-stimulator T cells (ICOS), on Foxp3 and on IL-10 molecules in T lymphocyte sub-populations was assessed.
METHODS: Cell survival (by annexin V binding) and ICOS in total lymphocytes, in CD4+/CD25+ and in CD4+/CD25- and Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25-cells was evaluated, by cytofluorimetric analysis, in mild intermittent asthmatics (n?=?19) and in controls (n?=?15). Allergen induced T lymphocyte proliferation and the in vivo effects of budesonide in mild persistent asthmatics (n?=?6) were also explored.
RESULTS: Foxp3 was reduced in CD4+/CD25- and in CD4+/CD25+ cells and ICOS was reduced in CD4+/CD25+ cells but it was increased in CD4+CD25-in asthmatics when compared to controls. In asthmatics, in vitro, budesonide was able to: 1) increase annexin V binding and to reduce ICOS in total lymphocytes; 2) increase annexin V binding and Foxp3 and to reduce ICOS in CD4+/CD25- cells; 3) reduce annexin V binding and to increase IL-10 and ICOS in CD4+/CD25+ cells; 4) reduce cell allergen induced proliferation. In vivo, budesonide increased ICOS in CD4+/CD25+ while it increased Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25- cells.
CONCLUSIONS: Budesonide modulates T cell survival, ICOS, Foxp3 and IL-10 molecules differently in T lymphocyte sub-populations. The findings provided shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation.

PMID: 23251336 [PubMed – in process]

View full post on pubmed: asthma

The effect of unilateral adrenalectomy on transformation of adrenal medullary chromaffin cells in vivo: a potential mechanism of asthma pathogenesis.

The effect of unilateral adrenalectomy on transformation of adrenal medullary chromaffin cells in vivo: a potential mechanism of asthma pathogenesis.

PLoS One. 2012;7(9):e44586

Authors: Hu CP, Zou YQ, Feng JT, Li XZ

Abstract
BACKGROUND: Decreased epinephrine (EPI) is an important underlying factor of bronchoconstriction in asthma. Exogenous ?(2)-adrenergic receptor agonist is one of the preferred options to treat asthma. We previously showed that this phenomenon involved adrenal medullary chromaffin cell (AMCC) transformation to a neuron phenotype. However, the underlying molecular mechanism is not fully understood. To further explore this, an asthmatic model with unilateral adrenalectomy was established in this study.
METHODOLOGY/PRINCIPAL FINDINGS: Thirty-two rats were randomly into four groups (n?=?8 each) control rats (controls), unilateral adrenalectomy rats (surgery-control, s-control), asthmatic rats (asthma), unilateral adrenalectomy asthmatic rats (surgery-induced asthma, s-asthma). Asthmatic rats and s-asthmatic rats were sensitized and challenged with ovalbumin (OVA). The pathological changes in adrenal medulla tissues were observed under microscopy. EPI and its rate-limiting enzyme, phenylethanolamine N-methyl transferase (PNMT), were measured. Peripherin, a type III intermediate filament protein, was also detected in each group. The asthmatic rats presented with decreased chromaffin granules and swollen mitochondria in AMCCs, and the s-asthmatic rats presented more serious pathological changes than those in asthmatic rats and s-control rats. The expressions of EPI and PNMT in asthmatic rats were significantly decreased, as compared with levels in controls (P<0.05), and a further decline was observed in s-asthmatic rats (P<0.05). The expression of peripherin was higher in the asthmatic rats than in the controls, and the highest level was found in the s-asthmatic rats (P<0.05).
CONCLUSION/SIGNIFICANCE: Compared with asthmatic rats and s-control rats, the transformation tendency of AMCCs to neurons is more obvious in the s-asthmatic rats. Moreover, this phenotype alteration in the asthmatic rats is accompanied by reduced EPI and PNMT, and increased peripherin expression. This result provides further evidence to support the notion that phenotype alteration of AMCCs contributes to asthma pathogenesis.

PMID: 22957086 [PubMed – in process]

View full post on pubmed: asthma

In vivo imaging of the airway wall in asthma: Fibered confocal fluorescence … – 7thSpace Interactive (press release)

In vivo imaging of the airway wall in asthma: Fibered confocal fluorescence
7thSpace Interactive (press release)
Airway remodelling is a feature of asthma including fragmentation of elastic fibres observed in the superficial elastin network of the airway wall. Fibered confocal fluorescence microscopy (FCFM) is a new and non-invasive imaging technique performed

View full post on asthma – Google News