COVID-19 Clues -Shortness of breath is a critical differentiator from other common illnesses

Interesting News Asthmatics

Harvard Medical School is reporting a couple of days ago on their news its news website, that “What can we learn from people with coronavirus who seek care at outpatient clinics?

NOTE from WAF: We salute Harvard Medical School for the sharing of this research and all of those on the front line. If your an Asthmatic and you experience any of these symptoms including severe shortness of breathe call someone right away. 

Since the early days of the COVID-19 pandemic, scientific literature and news reports have dedicated much attention to two groups of patients—those who develop critical disease and require intensive care and those who have silent or minimally symptomatic infections. This article is part of Harvard Medical School’s continuing coverage of medicine, biomedical research, medical education and policy related to the SARS-CoV-2 pandemic and the disease COVID-19.

Such accounts have mostly overlooked another large and important category of patients—those with symptoms concerning enough to seek care, yet not serious enough to need hospital treatment.

Now, a new analysis by researchers at Harvard Medical School and Harvard-affiliated Cambridge Health Alliance offers insights into this in-between category based on data collected from people presenting at an outpatient COVID-19 clinic in Greater Boston.

The team’s observations, published April 20 in the journal Mayo Clinic Proceedings, are based on data from more than 1,000 patients who visited the clinic for respiratory illness since COVID-19 was declared a pandemic in March.

The findings offer a compilation of clues that can help clinicians distinguish between patients with COVID-19 infections and those with other conditions that may mimic COVID-19 symptoms.

Such clues are critical because early triage and rapid decision-making remain essential even now that testing is becoming more widely available than it was in the early days of the pandemic, the research team said. Testing remains far from universal, and even when available, tests still may have a turnaround time of one to three days. Additionally, some rapid point-of-care tests that have emerged on the market have not been entirely reliable and have caused false-negative readings.

“Early recognition and proper triage are especially important given that in the first days of infection, people infected with SARS-CoV-2 may experience symptoms indistinguishable from a variety of other acute viral and bacterial infections,” said study lead author Pieter Cohen, an associate professor of medicine at Harvard Medical School and a physician at Cambridge Health Alliance. “Even when point-of-care diagnostic tests are available, given the potential for false-negative results, understanding the early natural history of COVID-19 and good old-fashioned clinical skills will remain indispensable for proper care.”

A nuanced understanding of the typical presentation of COVID-19 in the outpatient setting can also help clinicians determine how often to check back with patients, the researchers added. For example, those who have started developing shortness of breath demand very close monitoring and frequent follow-up to check how the shortness of breath is evolving and whether a patient may be deteriorating and may need to go to the hospital.

According to the report, COVID-19 typically presents with symptoms suggestive of viral infection, often with low-grade fever, cough and fatigue, and, less commonly, with gastrointestinal trouble. Shortness of breath usually emerges a few days after initial symptoms, becomes most pronounced upon exertion and may involve sharp drops in blood oxygen levels.

Chief among the team’s findings:

* Fever is not a reliable indicator. If present, it could manifest only with mild elevations in temperature.
* COVID-19 may begin with various permutations of cough without fever, sore throat, diarrhea, abdominal pain, headache, body aches, back pain and fatigue
* It can also present with severe body aches and exhaustion.
* A reliable early hint is loss of the sense of smell in the first days of disease onset.
* In serious COVID-19, shortness of breath is a critical differentiator from other common illnesses.
* Almost no one, however, develops shortness of breath, a cardinal sign of the illness, in the first day or two of disease onset.
* Shortness of breath can appear four or more days after onset of other symptoms.
* The first days after shortness of breath begins are a critical period that requires close and frequent monitoring of patients by telemedicine visits or in-person exams.
* The most critical variable to monitor is how the shortness of breath changes over time. Oxygen saturation levels can also be a valuable clue. Blood oxygen levels can drop precipitously with exertion, even in previously healthy people.
* A small number of people may never develop shortness of breath, but may have other symptoms that could signal low oxygen levels, including dizziness or falling.
* Anxiety—common among worried patients with viral symptoms suggestive of COVID-19—can also induce shortness of breath.

Distinguishing between anxiety-induced shortness of breath and COVID-19-related shortness of breath is critical. There are several ways to tell the two apart.

Key differentiators include:

Time of onset: Anxiety-induced shortness of breath occurs rapidly, seemingly out of the blue, while COVID-19 shortness of breath tends to develop gradually over a few days.
Patient description of sensation: Patients whose shortness of breath is caused by anxiety often describe the sensation occurring during rest or while trying to fall asleep but does not become more pronounced with daily activities. They often describe a sensation of inability to get enough air into their lungs. By contrast, shortness of breath induced by COVID-19-related drops in oxygen gets worse with physical exertion, including performing simple daily activities like walking, climbing stairs or cleaning.
Anxiety-related shortness of breath does not cause drops in blood oxygen levels

During a clinical exam, a commonly used device, the pulse oximeter, can be valuable in distinguishing between the two. The device measures blood oxygen levels and heart rate in a matter of seconds when clipped onto one’s finger.

Several types of pneumonia—a general term denoting infection in the lungs—can present with striking similarity to COVID-19. For example, COVID-19 respiratory symptoms appear to closely mimic symptoms caused by a condition known as pneumocystis pneumonia, a pulmonary infection predominantly affecting the alveoli, the tiny air sacs lining the surface of the lungs. Both COVID-19 patients and patients with pneumocystis pneumonia experience precipitous drops in oxygen levels with exertion and shortness of breath. However, in the case of pneumocystis pneumonia, the shortness of breath typically develops insidiously over weeks, not within days, as is the case with COVID-19. Here, a careful patient history detailing evolution of symptoms would be critical, the authors said.

Likewise, during the initial days of infection, both the flu and COVID-19 may have identical presentations, but thereafter the course of the two infections diverges. People with uncomplicated flu rarely develop significant shortness of breath. When they do experience trouble breathing, the shortness of breath is mild and remains stable. On the rare occasion of when flu causes a viral pneumonia, patients deteriorate rapidly, within the first two to three days. By contrast, patients with COVID-19 don’t begin to develop shortness of breath until several days after they first become ill.

Study co-investigators include Lara Hall, Janice Johns and Alison Rapaport.

Fragranced consumer products: effects on asthmatics

WAF Salutes Anne Steinemann, Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010 Australia

Fragranced consumer products, such as cleaning supplies, air fresheners, and personal care products, can emit a range of air pollutants and trigger adverse health effects. This study investigates the prevalence and types of effects of fragranced products on asthmatics in the American population. Using a nationally representative sample (n?=?1137), data were collected with an on-line survey of adults in the USA, of which 26.8% responded as being medically diagnosed with asthma or an asthma-like condition.

Results indicate that 64.3% of asthmatics report one or more types of adverse health effects from fragranced products, including respiratory problems (43.3%), migraine headaches (28.2%), and asthma attacks (27.9%). Overall, asthmatics were more likely to experience adverse health effects from fragranced products than non-asthmatics (prevalence odds ratio [POR] 5.76; 95% confidence interval [CI] 4.34–7.64). In particular, 41.0% of asthmatics report health problems from air fresheners or deodorizers, 28.9% from scented laundry products coming from a dryer vent, 42.3% from being in a room cleaned with scented products, and 46.2% from being near someone wearing a fragranced product. Of these effects, 62.8% would be considered disabling under the definition of the Americans with Disabilities Act. Yet 99.3% of asthmatics are exposed to fragranced products at least once a week. Also, 36.7% cannot use a public restroom if it has an air freshener or deodorizer, and 39.7% would enter a business but then leave as quickly as possible due to air fresheners or some fragranced product. Further, 35.4% of asthmatics have lost workdays or a job, in the past year, due to fragranced product exposure in the workplace. More than twice as many asthmatics would prefer that workplaces, health care facilities and health care professionals, hotels, and airplanes were fragrance-free rather than fragranced. Results from this study point to relatively simple and cost-effective ways to reduce exposure to air pollutants and health risks for asthmatics by reducing their exposure to fragranced products.

The online version of this article (10.1007/s11869-017-0536-2) contains supplementary material, which is available to authorized users.
Keywords: Asthma, Fragranced consumer products, Indoor air quality, Fragrance, Health effects, Volatile organic compounds, Semi-volatile organic compounds

Introduction

Fragranced consumer products pervade society and emit numerous volatile organic compounds, such as limonene, alpha-pinene, beta-pinene, acetaldehyde, and formaldehyde (Steinemann 2015; Nazaroff and Weschler 2004), and semi-volatile organic compounds, such as musks and phthalates (Weschler 2009; Just et al. 2010). However, ingredients in fragranced products are exempt from full disclosure on product labels or safety data sheets (Steinemann 2015), limiting awareness of potential emissions and exposures. Fragranced products have been associated with a range of adverse health effects including work-related asthma (Weinberg et al. 2017), asthmatic exacerbations (Kumar et al. 1995; Millqvist and Löwhagen 1996), respiratory difficulties (Caress and Steinemann 2009), mucosal symptoms (Elberling et al. 2005), migraine headaches (Kelman 2004), and contact dermatitis (Rastogi et al. 2007; Johansen 2003), as well as neurological, cardiovascular, cognitive, musculoskeletal, and immune system problems (Steinemann 2016).

This article investigates specifically the effects of exposure to fragranced products on asthmatics in the US population. In addition to health impacts, it also investigates societal access, preferences for fragrance-free environments, awareness of fragranced product emissions, and implications for air quality and health. It compares results from the sub-population of asthmatics with non-asthmatics, as well as with the general US population, as reported in Steinemann (2016). The study provides important data on the extent and severity of the problem, pointing to opportunities to reduce the adverse health, economic, and societal effects by reducing exposure to fragranced products.

Methods

A nationally representative on-line survey was conducted of the US population, representative of age, gender, and region (n?=?1137, confidence limit?=?95%, confidence interval?=?3%). The survey drew upon a large web-based US panel (over 5,000,000 people) held by Survey Sampling International, using randomized participant recruitment (SSI 2016). The survey instrument was developed and tested over a two-year period before full implementation in June 2016. The survey response rate was 95% (responses to panel recruitment 1201; screen-outs 13; drop-outs 46; completes 1137), and all responses were anonymous. The research study received ethics approval from the University of Melbourne. Details on the survey methodology are provided as a supplemental document.

This article extends and deepens the general population study of Steinemann (2016) by analyzing specifically the effects on asthmatics and compared to non-asthmatics and the general population. Of the general population surveyed, 26.8% responded as being medically diagnosed with either asthma (15.2%, n?=?173) or an asthma-like condition (12.5%, n?=?142) or both (26.8%, n?=?305). For the purposes of the article, the sub-population of “asthmatics” will be those medically diagnosed with asthma, an asthma-like condition, or both; the sub-population of “non-asthmatics” will be those in the general population other than asthmatics.

Survey questions investigated use and exposure to fragranced products, both from one’s own use and from others’ use, exposure contexts and products, health effects related to exposures, impacts of fragrance exposure in the workplace and in society, awareness of fragranced product ingredients and labeling, preferences for fragrance-free environments and policies, and demographic information.

Specific exposure contexts included air fresheners or deodorizers used in public restrooms and other environments, scented laundry products coming from a dryer vent, being in a room after it was cleaned with scented cleaning products, being near someone wearing a fragranced product, entering a business with the scent of fragranced products, fragranced soap used in public restrooms, and ability to access environments that used fragranced products.

Fragranced products were categorized as follows: (a) air fresheners and deodorizers (e.g., sprays, solids, oils, disks); (b) personal care products (e.g., soaps, hand sanitizer, lotions, deodorant, sunscreen, shampoos); (c) cleaning supplies (e.g., all-purpose cleaners, disinfectants, dishwashing soap); (d) laundry products (e.g., detergents, fabric softeners, dryer sheets); (e) household products (e.g., scented candles, restroom paper, trash bags, baby products); (f) fragrance (e.g., perfume, cologne, after-shave); and (g) other.

Health effects were categorized as follows: (a) migraine headaches; (b) asthma attacks; (c) neurological problems (e.g., dizziness, seizures, head pain, fainting, loss of coordination); (d) respiratory problems (e.g., difficulty breathing, coughing, shortness of breath); (e) skin problems (e.g., rashes, hives, red skin, tingling skin, dermatitis); (f) cognitive problems (e.g., difficulties thinking, concentrating, or remembering); (g) mucosal symptoms (e.g., watery or red eyes, nasal congestion, sneezing); (h) immune system problems (e.g., swollen lymph glands, fever, fatigue); (i) gastrointestinal problems (e.g., nausea, bloating, cramping, diarrhea); (j) cardiovascular problems (e.g., fast or irregular heartbeat, jitteriness, chest discomfort); (k) musculoskeletal problems (e.g., muscle or joint pain, cramps, weakness); and (j) other. Categories were derived from prior studies of fragranced products and health effects (Caress and Steinemann 2009; Miller and Prihoda 1999) and pre-tested before full survey implementation.

Results

Main findings are presented in this section, and full results for asthmatics, non-asthmatics, and the general population are provided as supplemental documentation. Demographic information is provided in Table ?Table11.

Table 1

Demographic information
Asthmatics Non-asthmatics General population
N N N
% of column total N
% of general population row N
% of column total
% of column total % of general population row
Total 305 305 832 832 1137
100.0% 26.8% 100.0% 73.2% 100.0%
Male/female
?All males 136 136 389 389 525
44.6% 25.9% 46.8% 74.1% 46.2%
?All females 169 169 443 443 612
55.4% 27.6% 53.2% 72.4% 53.8%
Gender–age
?Male 18–24 16 16 31 31 47
5.2% 34.0% 3.7% 66.0% 4.1%
?Male 25–34 36 36 94 94 130
11.8% 27.7% 11.3% 72.3% 11.4%
?Male 35–44 42 42 94 94 136
13.8% 30.9% 11.3% 69.1% 12.0%
?Male 45–54 30 30 78 78 108
9.8% 27.8% 9.4% 72.2% 9.5%
?Male 55–65 12 12 92 92 104
3.9% 11.5% 11.1% 88.5% 9.1%
?Female 18–24 26 26 52 52 78
8.5% 33.3% 6.3% 66.7% 6.9%
?Female 25–34 40 40 95 95 135
13.1% 29.6% 11.4% 70.4% 11.9%
?Female 35–44 43 43 112 112 155
14.1% 27.7% 13.5% 72.3% 13.6%
?Female 45–54 41 41 103 103 144
13.4% 28.5% 12.4% 71.5% 12.7%
?Female 55–65 19 19 81 81 100
6.2% 19.0% 9.7% 81.0% 8.8%
Open in a separate window
Fragranced product exposure

Among asthmatics, 99.0% are exposed to fragranced products at least once a week, from their own use (71.1% air fresheners and deodorizers; 85.9% personal care products; 78.4% cleaning supplies; 81.3% laundry products; 76.7% household products; 67.5% fragrance; 3.6% other). Further, 94.8% are exposed to fragranced products at least once a week, from others’ use. Combined, 99.3% of asthmatics are exposed to fragranced products through their own use, others’ use, or both. Among non-asthmatics, 98.1% are exposed to fragranced products at least once a week from their own use, 91.1% from others’ use, and 98.9% from either or both. Thus, asthmatics are more likely to be exposed to fragranced products, from their own use and others’ use and both, than non-asthmatics (POR, 1.66; 95% CI, 0.36–7.71).
Adverse health effects

Among asthmatics, 64.3% reported one or more types of adverse health effects from exposure to one or more types of fragranced products (43.3% respiratory problems; 27.2% mucosal symptoms; 28.2% migraine headaches; 19.0% skin problems; 27.9% asthma attacks; 15.1% neurological problems; 14.1% cognitive problems; 12.1% gastrointestinal problems; 9.8% cardiovascular problems; 11.1% immune system problems; 9.5% musculoskeletal problems; and 1.3% other). Among non-asthmatics, 23.8% reported one or more types of adverse health effects from exposure to one or more types of fragranced products (see Table ?Table2).2). Thus, among all types of health effects (excepting asthma attacks), asthmatics are more likely to be affected than non-asthmatics (POR 5.76; 95% CI, 4.34–7.64).
Table 2

Frequency and types of adverse health effects reported from exposure to fragranced consumer products
Asthmatics Non-asthmatics General population
305 832 1137
26.8% 73.2% 100.0%
Migraine headaches 86 93 179
28.2% 11.2% 15.7%
Asthma attacks 85 6 91
27.9% 0.7% 8.0%
Neurological problems 46 36 82
15.1% 4.3% 7.2%
Respiratory problems 132 79 211
43.3% 9.5% 18.6%
Skin problems 58 63 121
19.0% 7.6% 10.6%
Cognitive problems 43 23 66
14.1% 2.8% 5.8%
Mucosal symptoms 83 101 184
27.2% 12.1% 16.2%
Immune system problems 34 11 45
11.1% 1.3% 4.0%
Gastrointestinal problems 37 26 63
12.1% 3.1% 5.5%
Cardiovascular problems 30 20 50
9.8% 2.4% 4.4%
Musculoskeletal problems 29 14 43
9.5% 1.7% 3.8%
Other 4 15 19
1.3% 1.8% 1.7%
Total 196 198 394
(One or more health problems) 64.3% 23.8% 34.7%
Open in a separate window

Of the 64.3% of asthmatics reporting adverse health effects from fragranced products, proportionately more males report adverse effects than females, relative to non-asthmatics (asthmatic 52.0% female, 48.0% male; non-asthmatic 60.1% female, 39.9% male) (POR 1.39; 95% CI, 0.93–2.97) (see Table ?Table3).3). Among all age groups, proportionately more asthmatics in age group 25–34 report adverse effects relative to non-asthmatics (asthmatic 69.7%; non-asthmatic 23.3%) (POR 7.59; 95% CI, 4.19–13.76). Among all gender and age groups, proportionately more males age 25–34 report adverse effects relative to non-asthmatics (asthmatic 83.3%; non-asthmatic 18.1%) (POR 22.65; 95% CI, 8.15–62.92).
Table 3

Demographic information for individuals reporting adverse effects from exposure to fragranced products
Asthmatics Non-asthmatics General population
N
% of column total N
% of asthmatics row, Table ?Table11 N
% of column total N
% of non-asthmatics row, Table ?Table11 N
% of column total N
% of general population row, Table 1
Total 196 196 198 198 394 394
100.0% 64.3% 100.0% 23.8% 100.0% 34.7%
Male/female
?All males 94 94 79 79 173 173
48.0% 69.1% 39.9% 20.3% 43.9% 33.0%
?All females 102 102 119 119 221 221
52.0% 60.4% 60.1% 26.9% 56.1% 36.1%
Gender–age
?Male 18–24 8 8 6 6 14 14
4.1% 50.0% 3.0% 19.4% 3.6% 29.8%
?Male 25–34 30 30 17 17 47 47
15.3% 83.3% 8.6% 18.1% 11.9% 36.2%
?Male 35–44 31 31 24 24 55 55
15.8% 73.8% 12.1% 25.5% 14.0% 40.4%
?Male 45–54 17 17 15 15 32 32
8.7% 56.7% 7.6% 19.2% 8.1% 29.6%
?Male 55–65 8 8 17 17 25 25
4.1% 66.7% 8.6% 18.5% 6.3% 24.0%
?Female 18–24 12 12 8 8 20 20
6.1% 46.2% 4.0% 15.4% 5.1% 25.6%
?Female 25–34 23 23 27 27 50 50
11.7% 57.5% 13.6% 28.4% 12.7% 37.0%
?Female 35–44 28 28 33 33 61 61
14.3% 65.1% 16.7% 29.5% 15.5% 39.4%
?Female 45–54 27 27 26 26 53 53
13.8% 65.9% 13.1% 25.2% 13.5% 36.8%
?Female 55–65 12 12 25 25 37 37
6.1% 63.2% 12.6% 30.9% 9.4% 37.0%
Open in a separate window
Specific exposure contexts

Air fresheners and deodorizers were associated with health problems for 41.0% of asthmatics (54.4% respiratory problems, 39.2% asthma attacks, 29.6% mucosal symptoms, 36.8% migraine headaches, 15.2% neurological problems, 26.4% skin problems, and others), and for 12.9% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from air fresheners than non-asthmatics (POR 4.71; 95% CI, 3.47–6.39).
Table 4

Frequency and types of health problems experienced by asthmatics, non-asthmatics, and the general population from exposure to four types of fragranced consumer products
Air fresheners or deodorizers Scented laundry products Scented cleaning products Fragranced person
Asth Non-asth Gen Pop Asth Non-asth Gen Pop Asth Non-asth Gen Pop Asth Non-asth Gen Pop
Health problem 125 107 232 88 54 142 129 95 224 141 127 268
41.0% 12.9% 20.4% 28.9% 6.5% 12.5% 42.3% 11.4% 19.7% 46.2% 15.3% 23.6%
Migraines 46 36 82 24 13 37 42 33 75 45 51 96
36.8% 33.6% 35.3% 27.3% 24.1% 26.1% 32.6% 34.7% 33.5% 31.9% 40.2% 35.8%
Asthma attacks 49 4 53 27 1 28 42 4 46 41 3 44
39.2% 3.7% 22.8% 30.7% 1.9% 19.7% 32.6% 4.2% 20.5% 29.1% 2.4% 16.4%
Neurological 19 17 36 16 8 24 28 19 47 27 14 41
15.2% 15.9% 15.5% 18.2% 14.8% 16.9% 21.7% 20.0% 21.0% 19.1% 11.0% 15.3%
Respiratory 68 40 108 34 12 46 67 42 109 77 41 118
54.4% 37.4% 46.6% 38.6% 22.2% 32.4% 51.9% 44.2% 48.7% 54.6% 32.3% 44.0%
Skin 33 32 65 22 19 41 25 20 45 24 15 39
26.4% 29.9% 28.0% 25.0% 35.2% 28.9% 19.4% 21.1% 20.1% 17.0% 11.8% 14.6%
Cognitive 15 16 31 9 6 15 21 10 31 21 9 30
12.0% 15.0% 13.4% 10.2% 11.1% 10.6% 16.3% 10.5% 13.8% 14.9% 7.1% 11.2%
Mucosal 37 49 86 27 21 48 35 48 83 40 58 98
29.6% 45.8% 37.1% 30.7% 38.9% 33.8% 27.1% 50.5% 37.1% 28.4% 45.7% 36.6%
Immune system 16 5 21 16 3 19 18 5 23 17 2 19
12.8% 4.7% 9.1% 18.2% 5.6% 13.4% 14.0% 5.3% 10.3% 12.1% 1.6% 7.1%
Gastrointestinal 18 13 31 20 9 29 17 15 32 21 10 31
14.4% 12.1% 13.4% 22.7% 16.7% 20.4% 13.2% 15.8% 14.3% 14.9% 7.9% 11.6%
Cardiovascular 18 12 30 11 4 15 16 10 26 15 5 20
14.4% 11.2% 12.9% 12.5% 7.4% 10.6% 12.4% 10.5% 11.6% 10.6% 3.9% 7.5%
Musculoskeletal 19 8 27 21 2 23 13 10 23 15 2 17
15.2% 7.5% 11.6% 23.9% 3.7% 16.2% 10.1% 10.5% 10.3% 10.6% 1.6% 6.3%
Other 2 6 8 1 3 4 2 2 4 2 5 7
Open in a separate window

Scented laundry products coming from a dryer vent were associated with health problems for 28.9% of asthmatics (38.6% respiratory problems, 30.7% asthma attacks, 30.7% mucosal symptoms, 27.3% migraine headaches, 18.2% neurological problems, 25.0% skin problems, and others), and for 6.5% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from scented laundry products coming from a dryer vent than non-asthmatics (POR 5.84; 95% CI, 4.03–8.46).

Being in a room after it has been cleaned with scented products was associated with health problems for 42.3% of asthmatics (51.9% respiratory problems, 32.6% asthma attacks, 27.1% mucosal symptoms, 32.6% migraine headaches, 21.7% neurological problems, 19.4% skin problems, and others), and for 11.4% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from being in a room after it has been cleaned with scented products than non-asthmatics (POR 5.69; 95% CI, 4.16–7.77).

Being near someone wearing a fragranced product was associated with health problems for 46.2% of asthmatics (54.6% respiratory problems, 29.1% asthma attacks, 28.4% mucosal symptoms, 31.9% migraine headaches, 19.1% neurological problems, 17.0% skin problems, and others), and 15.3% of non-asthmatics (see Table ?Table4).4). Thus, asthmatics were more likely to experience adverse effects from being near someone wearing a fragranced product than non-asthmatics (POR 4.77; 95% CI, 3.56–6.40).

Exposure to fragranced products can trigger disabling health effects, according to criteria from the Americans with Disabilities Act (ADA 1990): “Do any of these health problems substantially limit one or more major life activities, such as seeing, hearing, eating, sleeping, walking, standing, lifting, bending, speaking, breathing, learning, reading, concentrating, thinking, communicating, or working, for you personally?” Among asthmatics reporting health problems, 62.8% reported that the severity of the health effect from fragranced product exposure was potentially disabling. Thus, asthmatics were more likely to report disabling health effects from fragranced products than non-asthmatics (POR 7.13; 95% CI, 5.11–9.95).
Ingredient disclosure and product claims

Among asthmatics, 41.3% were not aware that a “fragrance” in a product is typically a chemical mixture of several dozen to several hundred chemicals, 57.4% were not aware that fragrance chemicals do not need to be fully disclosed on the product label or material safety data sheet, and 58.0% were not aware that fragranced products typically emit hazardous air pollutants such as formaldehyde. Further, 64.3% of asthmatics, and 75.7% of non-asthmatics, were not aware that even so-called natural, green, and organic fragranced products typically emit hazardous air pollutants (28.9% of asthmatics and 15.7% of non-asthmatics were aware). However, 60.3% of asthmatics, and 60.1% of non-asthmatics, would not still use a fragranced product if they knew it emitted hazardous air pollutants.
Societal and workplace effects

Fragranced products can also present barriers for asthmatics in public places and the workplace. Among asthmatics, 36.7% are prevented from using the restrooms in a public place, because of the presence of an air freshener, deodorizer, or scented product. Also, 28.9% are prevented from washing their hands with soap in a public place, if the soap is fragranced. Further, 43.9% are prevented from going to some place because they would be exposed to a fragranced product that would make them sick. Notably, 39.7% report that if they enter a business, and smell air fresheners or some fragranced product, they want to leave as quickly as possible.

Significantly, 35.4% of asthmatics, and 7.7% of non-asthmatics, have become sick, lost workdays, or lost a job, in the past 12 months, due to fragranced products in their work environment. Thus, asthmatics were more likely to have lost workdays or lost a job due to illness from fragranced products in their work environment than non-asthmatics (POR 6.58; 95% CI, 4.65–9.30).

Fragrance-free policies receive a strong majority of support. Among asthmatics, 66.2% would be supportive of a fragrance-free policy in the workplace (compared to 16.1% that would not). Thus, more than four times as many asthmatics would prefer a fragrance-free workplace than fragranced. Also, 72.1% of asthmatics would prefer that health care facilities and health care professionals be fragrance-free (compared to 14.8% that would not). Thus, nearly five times as many asthmatics would prefer fragrance-free health care facilities and professionals than fragranced.

Among non-asthmatics, 48.3% would support a fragrance-free workplace (compared with 21.0% that would not), and among the general population, 53.1% would support a fragrance-free workplace (compared with 19.7% that would not). Thus, regardless of population, fragrance-free workplaces receive more than twice as many in support as not.

Asthmatics also strongly prefer fragrance-free airplanes and hotels. If given a choice between flying on an airplane that pumped scented air throughout the passenger cabin, or did not pump scented air throughout the passenger cabin, 63.6% of asthmatics would choose an airplane without scented air (compared to 24.9% with scented air). Similarly, if given a choice between staying in a hotel with fragranced air, or without fragranced air, 63.0% would choose a hotel without fragranced air (compared to 28.5% with fragranced air).

Among non-asthmatics, 57.6 and 52.9% would prefer fragrance-free airplanes and hotels, respectively (compared with 23.1 and 27.5% that would not) and among the general population, 59.2 and 55.6% would prefer fragrance-free airplanes and hotels, respectively (compared with 23.6 and 27.8% that would not). Thus, overall, more than twice as many asthmatics, as well as the general population, would prefer that airplanes and hotels were fragrance-free rather than fragranced.

Discussion

Asthma is a serious and increasing health condition, affecting an estimated 25 million Americans, and costing an estimated $56 billion annually in medical expenses, missed school and work days, and premature deaths (CDCP 2017a). Nearly 12 million Americans had an asthma attack in 2015, many of which could have been prevented (CDCP 2017b).

Results from this study show that asthmatics are profoundly, adversely, and disproportionately affected by exposure to fragranced consumer products. While non-asthmatics are also affected, asthmatics are more likely to experience adverse health effects from exposure (POR 5.76; 95% CI 4.34–7.64).

Of particular concern are involuntary exposures to fragranced products, such as in health care facilities and workplaces. Asthmatics are prevented from accessing public toilets, businesses, and workplaces due to adverse health effects from fragranced products. Further, 35.4% have lost workdays or a job, in the past year, due to fragranced product exposure in the workplace. More than twice as many asthmatics would prefer that workplaces, health care facilities, health care professionals, airplanes, and hotels were fragrance-free than fragranced.

Limitations of the study include the following: (a) data were based on self-reports, although a well-established method for survey research; (b) all possible products and health effects were not included, although the low percentages for responses in the “other” category indicates the survey captured the primary products and effects; (c) product emissions and exposures were not measured directly; (d) the cross-sectional design of the study, while useful for determining prevalence, provides data that represent just one point in time, limiting the analysis of risk factors, temporal relationships between exposures and effects, and trends in prevalence, and (e) only adults (ages 18–65) were included in the survey, which overlooks the effects of fragranced products on children (such as in day care facilities and schools) and on seniors (such as in retirement communities and assisted living facilities).

Results of this study provide strong evidence that fragranced consumer products can harm health for both asthmatics and non-asthmatics, with asthmatics more affected. Understanding why these products are associated with a range of health problems is a critical topic that requires further research. Fragranced products emit a range of volatile and semi-volatile organic compounds, some of which are associated with adverse health effects, but virtually none of which need to be disclosed (Steinemann 2009, 2015), thus limiting scientific inquiry and public awareness of potential exposures to problematic compounds. A broader mechanistic framework is needed to understand which ingredients, or combinations of ingredients, could be associated with the adverse health outcomes reported in this study. In the meantime, a prudent and practical approach, and one that would provide direct and immediate benefits, would be to limit exposure to fragranced consumer products.

Perfumes, Magazines and Severe Asthma

Perfumes Strips and Scents in Magazines “Negatively Affect Asthmatics and adverse respiratory reactions to perfumes says study. In honor of #AsthmaAwarenessWeek and #WorldAsthmaDay can we stop doing this?

Note from the World Asthma Foundation. This study dates back to 1994. How much education is needed to change behavior? Can we PLEASE stop this practice already? It’s 2020 and we all know this to be true already right? Just saying People @people magazine.

Background

Perfume- and cologne-scented advertisement strips are widely used. There are, however, very few data on the adverse effects of perfume inhalation in asthmatic subjects.

OBJECTIVES:

This study was undertaken to determine whether perfume inhalation from magazine scent strips could exacerbate asthma.

METHODS:

Twenty-nine asthmatic adults and 13 normal subjects were included in the study. Histories were obtained and physical examinations performed. Asthma severity was determined by clinical criteria of the U.S.National Heart, Lung, and Blood Institute (NHLBI). Skin prick tests with common inhalant allergens and with the perfume under investigation were also performed. Four bronchial inhalation challenges were performed on each subject using commercial perfume scented strips, filter paper impregnated with perfume identical to that of the commercial strips, 70% isopropyl alcohol, and normal saline, respectively. Symptoms and signs were recorded before and after challenges. Pulmonary function studies were performed before and at 10, 20, and 30 minutes after challenges.
RESULTS:

Inhalational challenges using perfume produced significant declines in FEV1 in asthmatic patients when compared with control subjects. No significant change in FEV1 was noted after saline (placebo) challenge in asthmatic patients. The percent decline in FEV1 was significantly greater after challenge in severely asthmatic patients as compared with those with mild asthma. Chest tightness and wheezing occurred in 20.7% of asthmatic patients after perfume challenges. Asthmatic exacerbations after perfume challenge occurred in 36%, 17%, and 8% of patients with severe, moderate, and mild asthma, respectively. Patients with atopic asthma had greater decreases in FEV1 after perfume challenge when compared with patients with nonallergic asthma.

CONCLUSIONS:

Perfume-scented strips in magazines can cause exacerbations of symptoms and airway obstruction in asthmatic patients. Severe and atopic asthma increases risk of adverse respiratory reactions to perfumes.

U.S National Institutes of Health stands with Asthma patients, families, advocates, researchers, and health care professionals

Today on @WorldAsthmaDay, the U.S National Institutes of Health stands with patients, families, advocates, researchers, and health care professionals to raise awareness about this common chronic respiratory disease, the people it affects, and the biomedical research that improves its prevention and treatment.

Asthma is a chronic lung disease that causes periods of wheezing, chest tightness, shortness of breath, and coughing. It is a major contributing factor to missed time from school and work, with severe attacks requiring emergency room visits and hospitalizations. Sometimes these asthma attacks can be fatal.

This year, we recognize that the coronavirus disease 2019 (COVID-19) pandemic is creating concern and uncertainty for many people around the globe, including those with asthma. The disease can affect the nose, throat, and lungs, cause an asthma attack, and possibly lead to pneumonia and acute respiratory disease. According to the Centers for Disease Control and Prevention(link is external), people with asthma should continue their current asthma medications and discuss any concerns with their healthcare provider. Researchers at NIH and elsewhere are working to learn more about COVID-19 and to develop specific treatments and vaccines.

Three NIH institutes support and conduct studies on asthma — the National Institute of Environmental Health Sciences (NIEHS); the National Heart, Lung, and Blood Institute (NHLBI); and the National Institute of Allergy and Infectious Diseases (NIAID). Institute scientists and grantees made several important advances in understanding, treating, and managing asthma in 2019. These findings and other highlights are featured in five topic areas below:

Relationship between asthma and COVID-19
Populations at risk of developing asthma
Potential new treatments
Genes involved in asthma
Asthma management

Relationship between asthma and COVID-19

NIAID is initiating a home-based study to assess the incidence of infection with SARS-CoV-2, the virus that causes COVID-19, in children and their caregivers and siblings. A key objective of this observational study will be to determine if infection rates or immune responses to SARS-CoV-2 infection differ in children who have asthma or other allergic conditions compared to those who have not been diagnosed with or treated for these conditions.

NIAID also is starting an observational study in patients hospitalized for COVID-19 to understand if specific characteristics of the immune response influence or reflect the severity of infection. This study may help determine whether underlying diseases, such as asthma, influence the body’s response to SARS-CoV-2 infection.
Populations at risk of developing asthma

Children

NIH scientists are making progress in understanding the underlying factors that contribute to the development of asthma in U.S. children. This year, an international collaboration led by NIEHS scientists reported that the presence of newly discovered novel epigenetic markers — or chemical tags that attach to DNA — may indicate a newborn’s risk of developing asthma. The data were generated by the Pregnancy and Childhood Epigenetics Consortium and may help researchers find asthma biomarkers, or molecular indicators of asthma, and identify at birth which children will eventually develop the condition.

At NHLBI, researchers discovered a link(link is external) between childhood asthma flare ups and changes in the lung microbiome, the communities of bacteria and other microorganisms that are normally present in the lung and usually do not cause symptoms. The scientists determined that children with mild to moderate asthma who experienced early signs of an upcoming asthma flare up tended to have higher levels of certain types of disease-causing bacteria in their lungs. The study could lead to a precision medicine approach for treating mild to moderate childhood asthma by altering the number and types of bacteria in a child’s airways.

Ongoing NIAID-funded clinical studies focus on interventions to prevent asthma development in children at high risk of developing the condition. One team of researchers studied a large group of children who were hospitalized as infants with bronchiolitis, a common early-life lung infection usually caused by a virus. The scientists found that recurrent wheezing by age 3 is at least three times more likely to occur in children whose bronchiolitis was associated with a rhinovirus C infection and who also had early signs of allergy to foods or inhaled allergens.

African Americans and people of African ancestry

Another group that bears a disproportionate burden of asthma is African Americans. In an NHLBI-funded study that is the largest genome-wide association study of asthma in African ancestry populations to date, researchers identified two novel regions on a specific chromosome that may be linked to asthma risk. The scientists theorize that a better understanding of the genetic risk factors for asthma in African ancestry populations will lead to development of better therapeutic interventions.
Potential new treatments

Using a mouse model of asthma, NIEHS researchers reported a possible treatment for neutrophilic asthma, a particularly severe form that responds poorly to the standard asthma therapy of corticosteroids. The orally available drug VTP-938 made it easier for the mice to breathe after they were exposed to house dust extracts. The results suggest that VTP-938 may be an innovative treatment for humans with this steroid-resistant form of asthma.
Genes involved in asthma

An NIAID-funded study sought to understand why some, but not all, colds lead to asthma attacks among children with asthma. The scientists obtained nasal washings from 106 children with severe asthma who experienced cold symptoms. Members of the research team compared samples from those who required corticosteroids after a cold-induced asthma attack and those who did not have an asthma attack following a cold. The research team found that colds that led to an asthma attack caused changes in the production of six families of genes that are associated with maintaining the function of the outermost layer of tissue lining the respiratory tract and with the responses of immune cells in close contact with this layer.

Variations in two genes — the aryl hydrocarbon receptor nuclear translocator (ARNT) and the protein tyrosine phosphatase, nonreceptor type 22 (PTPN22) — are associated with immune-mediated diseases, such as asthma, in several ethnicities, according to NIEHS researchers and their collaborators. Because ARNT and PTPN22 are sensitive to environmental factors, this study is the first to demonstrate across ethnicities the combined role of these genes and environmental changes in the development of immune-related conditions like asthma.
Asthma management

NHLBI’s National Asthma Education Prevention Program is coordinating the 2020 focused updates to the 2007 Asthma Management Guidelines. These guidelines are designed to improve the care of people living with asthma as well as help primary care providers and specialists make decisions about asthma management. NHLBI released the updated focus areas of the guidelines for public comment, and the final recommendations for these areas are expected to be published later this year. They will address several priority topic areas listed below:

Using inhaled medications when needed
A new type of inhaled medication called long acting muscarinic antagonists
Treating allergies by exposure to low doses of allergens by mouth or with shots
Reducing indoor asthma triggers
A new procedure for asthma known as bronchial thermoplasty
A fractional exhaled nitric oxide test that may be helpful in diagnosing or managing asthma

Experts hope that these guidelines will help reduce the burden of asthma nationwide and improve the quality of life for those living with the condition.

Defeating Asthma Series Announced for World Asthma Day, May 5, 2020

 

World Asthma Foundation is supporting care of Asthma and asthmatics around the world through a new series focused on Defeating Asthma with the aim of shining a spotlight on getting to a cure

The World Asthma Foundation (WAF) exists for education and advocacy for people with asthma who suffer medically with health issues that make them highly vulnerable to the COVID-19 virus and other diseases.

We’ve hunkered down close to home here at the WAF. While doing so, we’re poring over volumes of available Asthma research data to share our understanding of the root causes of Asthma with emphasis on Severe Asthma.

Our ultimate goal is to understand the root cause of Severe Asthma (already considered a pandemic by many) while we aim for a cure. By banding together with other Asthmatics, including those that care about Asthmatics and clinicians that treat, we can defeat Asthma and we can do so now.

Why this Matters:

  • Asthma is not one disease but many and the causes underlying its development and manifestations are many including environmental issues
  • Asthma has reached pandemic levels around the globe
    Asthma is a chronic lung disease that affects over 300 million worldwide
  • The projected rate will reach 400 million by 2025
  • Environmental exposures have been proven to play a significant role in the development of asthma and as triggers
  • Asthma is believed to be determined by a complicated set of one’s own genetics and environmental exposures including a multitude of toxic chemicals and the overuse of antibiotics
  • In the U.S., African Americans are almost three times more likely to die from asthma-related causes than the white population
  • Australia reported the highest rate of doctor diagnosed, clinical/treated asthma, and wheezing
  • Defining asthma remains an ongoing challenge and innovative methods are needed to identify, diagnose, and accurately classify asthma at an early stage to most effectively implement optimal management and reduce the health burden attributable to asthma
  • According to the U.S. Centers for Disease Control, The total annual cost of asthma in the United States, including medical care, absenteeism and mortality, was $81.9 Billion a year.

We can move the needle by taking action now to make the difference for those that suffer from Asthma.” – Alan Gray, Director WAF Australia

What you can expect from the WAF Severe Asthma Series

Follow along with the series (click here) as we cover a variety of topics of interest to Asthmatics. 

  • What are the various types of Severe Asthma
  • What drives Severe Asthma
  • Impact of the environment on Severe Asthma
  • For additional on Asthma and the Microbiome click here 
  • What are the treatment options for Severe Asthma
  • Real world case studies with in-depth analysis
  • University research
  • Live expert podcast and interviews
  • Healthy lifestyle resources
  • Asthma advocacy guide and communication strategies for talking with your medical team

WAF will bring fresh perspectives from experts in the field that affects Asthmatics.

What we’d like from you:

Follow along, subscribe, share with a friend and send us your feedback.
Connect with us on Twitter and on Facebook

Delivered by FeedBurner

 

 

Managing Asthma during COVID-19: An Example for Other Chronic Conditions in Children and Adolescents

 

The novel coronavirus COVID-19, caused by the pathogen SARS-CoV-2, has now spread around the globe with over 1.8 million individuals affected and over 110,000 deaths internationally.(1, 2, 3, 4) As of April 12, 2020 there are 530,830 cases in the U.S. with over 20,000 deaths(2,3) The Institute for Health Metrics and Evaluation (IHME) has predicted that this pandemic could exceed current healthcare capacity in the United States (US) with a total of 81,114 deaths (95%UI 38,242 to 162,106) through August 2020.(5)

Asthma is one of the most common chronic diseases of childhood in the United States. Data from the U.S. Department of Health and Human Services notes that asthma prevalence increased between 2001 and 2010 and is now at its highest prevalence ever (overall 8.4% in 2010).(6) In the US, approximately 7 million children have asthma.(6) The morbidity of asthma in the US is high, and is higher in children than adults. Children missed 10.5 million school days due to asthma in 2008; there were 6.7 million primary care visits related to asthma and 600,000 asthma-related ED visits for children in 2007.(7)

Multiple guidelines have emerged from international societies on the management of medical care during COVID-19 which include a section on pediatric asthma, including a North American guideline on contingency planning for allergy and immunology clinics during a pandemic and a Canadian Pediatric Society statement on asthma management during COVID-19.(8,9) Due to the high prevalence of asthma in the United States, which is at the current epicenter of a global pandemic, the goal of this commentary is to provide an overview of what is known, and what is yet to be learned, about COVID-19 and pediatric asthma.
:
Differentiating Asthma from COVID-19

Symptoms of COVID-19 can be similar to those of worsening asthma, or an asthma exacerbation. Dry cough and shortness of breath, commonly seen in asthma, are among the most common presenting symptoms of COVID-19 in case series of children admitted to the hospital in China, as well as in available CDC data in the U.S.(10, 11, 12)

Fever, a common presenting symptom of COVID-19, may help differentiate COVID-19 from an asthma exacerbation, although fever can be present in other virus-triggered asthma exacerbations as well.(3,10, 11, 12) Other less common symptoms of COVID-19, better described in the adult population, may help differentiate COVID-19 from asthma and include myalgia, confusion headache, pharyngitis, rhinorrhea, loss of sense of smell and taste, diarrhea, nausea and vomiting.(12) A travel history, close contact with someone infected with COVID-19, and absence of a prior atopic history in a child also help to differentiate the two.

Since there is substantial overlap between the clinical presentation of worsening asthma and COVID-19 and increasing community spread lessens likelihood of known contact with a case, screening for COVID-19 is required if available in any asthmatic child who comes to medical attention with worsening cough or shortness of breath.(8,13)

The Role of Asthma in COVID-19 Morbidity and Mortality

There is a theoretical risk that infection with COVID-19 in an asthmatic child may increase the risk of pneumonia or acute respiratory disease. (14) As a result, the CDC lists moderate to severe asthma as a risk factor for COVID-19 morbidity and mortality.(14) However, to date the literature is ambiguous on whether pre-existing asthma increases the risk of either COVID-19 infection, or morbidity/mortality due to COVID-19, in children.

The evidence on COVID-19 risk factors derives largely from the adult population. Four case series, all from Wuhan, China, of adults admitted to hospital with COVID-19 did not list asthma as an underlying pre-existing condition in any of those patients.(12,15, 16, 17) In a large case series of 1099 adult patients from 552 hospitals in 30 provinces in China, asthma was not listed as a pre-existing condition in any of the patients described.(18) In contrast, recent data released from the CDC of U.S. hospitalizations in March,2020 notes that 27.3% of adults 18-49 years of age who were hospitalized with COVID-19 had a history of asthma.(3) In adults aged 50-64 years of age hospitalized for COVID-19 asthma was present in 13.2% and in those 65 years or older asthma was present in 12.9%.(3,19) As a result, the American Academy of Allergy, Asthma & Immunology (AAAAI) notes that ‘those with asthma in the 18-49 year old age range may be at increased risk of hospitalization due to COVID-19.’(19)

Although there is a paucity of literature on pediatric risk factors, the case series to date from Wuhan on hospitalized pediatric cases don’t list asthma as a pre-existing risk factor for morbidity or mortality.(10,11) It is further reassuring that children appear to be at lower risk of COVID-19 morbidity and mortality than the adult population in general, although severe infection still can occur.(13,20) The CDC morbidity and mortality report notes that among the 149,082 reported U.S. cases of COVID-19 for which age is known, only 2572 (1.7%) occurred in children 18 years and younger.(3) Although among the patients with information on underlying conditions, 23% had at least one underlying condition such as asthma, only 5.7% of children infected with COVID-19 required hospitalization (compared with 10% of adults aged 18-64 years) and only 3 deaths were reported in children (<1% of pediatric cases). In a case series from China of 72,000 cases, approximately 1% were children aged 0 to 18 years of age with only 1 death reported in the adolescent population (and none in children under the age of 10 years).(13,21)

Another risk in children with asthma is that infection with COVID-19 could trigger a viral-induced asthma exacerbation. There is minimal literature on this risk from COVID-19, but there are data on the risk of asthma exacerbations triggered from other coronavirus infections, with mixed findings. Severe acute respiratory syndrome (SARS), due to human coronaviruses HCoV-229E and HCoV-OC43, did not cause an increase in asthma exacerbations in children during the 2002 epidemic, nor induce bronchial hyperreactivity or eosinophilic inflammation.(22) In fact, paradoxically, asthma exacerbations actually decreased during that time, which was attributed to improvements in hygiene measures related to the epidemic.(22) However, in contrast, non-epidemic coronaviruses are found commonly in the respiratory tracts of children with an asthma exacerbation and have contributed to bronchial hyper-reactivity and eosinophilic inflammation.(23, 24, 25, 26)

In summary, based on available information to date, it is unclear whether there is a significantly increased risk of COVID-19 morbidity among asthmatic children.(8,9) It is also unknown whether asthma medications such as high-dose inhaled corticosteroids or asthma biological therapies pose a risk in managing COVID-19 infections. Before any definitive conclusions can be drawn, larger scale data are required from pediatric populations, and from heterogeneous locations that have been impacted by COVID-19. It also remains unclear if COVID-19 increases the risk of asthma exacerbations. As a result, good asthma control is essential as a precautionary measure during this time.(8,9,13,20)
Go to:

Treatment of Asthma During COVID-19

In addition to the current burden of COVID-19, the spring season is often a time for asthma exacerbations due to emergence of seasonal aeroallergens, and other respiratory viruses.(27) The best way to prevent an exacerbation is consistent proper use of medicines to control asthma, such as inhaled corticosteroids and/or montelukast. As a result, children should remain on their current asthma medications during COVID-19.(8,9) This recommendation is supported by multiple international organizations, including the Centers for Disease Control, the Global Initiative for Asthma, and the North American consensus guideline on allergy care during COVID.(8,9,28,29) It is recommended that children not ‘step down’ any controller medication during this time unless ‘this is clearly favorable from an individual standpoint, with careful consideration of the balance between benefit and harm/burden.’(8) Other recommendations to maintain asthma control include avoiding known asthma triggers such as aeroallergens, frequent handwashing, physical distancing, and regular review of inhaler technique.(9,29) An exacerbation, if it occurred, ‘could require [children] to enter the healthcare system, which would put them at increased risk of being exposed to SARS-CoV-2 during the current pandemic.’(8)

Some biologic agents, such as omalizumab (anti-IgE) and mepolizumab (anti-IL5), are approved for use in moderate to severe asthma in adolescents(30) The current recommendation for adolescents who are using these medications is to continue their use.(8) There is no current evidence that use of these medications increases the risk of COVID-19 infection or morbidity.

If a child is using a nebulized asthma relief medication, this should be switched to a metered-dose inhaler (MDI) or dry powder inhaler (turbuhaler or diskus) under most circumstances.(8,9) Nebulization increases the risk of viral lower lung deposition.(8,9,31) It also increases the risk of infection transmission due to both stimulating a cough reflex, as well as generating ‘a high volume of respiratory aerosols that may be propelled over a longer distance than is involved in a natural dispersion pattern.’(31) It was poignantly noted in a recent editorial that ‘there is a possibility that nebulizer therapy in patients with COVID-19 infection can transmit potentially viable coronavirus to susceptible bystander hosts.’(31) The only possible reasons for a child to use a nebulizer at home during the COVID-19 pandemic are a poor response to a MDI/spacer, a child who is either uncooperative or unable to follow the directions required for MDI use, or medication shortages (which are discussed in more detail below).(8,9,31)
Go to:

Treatment of Asthma Exacerbations during COVID-19

The CDC and World Health Organization (WHO) have recommended against oral corticosteroid (OCS) use as a treatment for COVID-19.(32,33) This recommendation is based on experience with influenza, SARS-CoV, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), where OCS use prolonged viral replication and was associated with prolonged viral clearance, increased complication rates, increased risk of mechanical ventilation and higher mortality rates.(34, 35, 36, 37) It has been noted that OCS therapy increases the risk of nosocomial infection and secondary infection.(38) However, there is a distinction between OCS use as a therapy for COVID-19, and OCS use as a treatment of asthma exacerbations.(8) There is broad consensus that asthma exacerbations should be treated aggressively and in keeping with current guideline recommendations.(9) Multiple national and international organizations such as the Global Initiative for Asthma recommend OCS use as required, and in keeping with the child’s asthma action plan, during COVID-19.(8,9,28)

The use of nebulized medications are especially discouraged in a healthcare setting, where infection transmission to other vulnerable patients is a risk.(9,31) If used, proper personal protective equipment (PPE) is required. It must also be considered that nebulized viral droplets can persist in the air for hours.(39)

For any child with asthma who is having progressive or worsening symptoms, COVID-19 screening protocols must be used to help determine their level of risk as well as the need for COVID-19 testing at an appropriate facility.(8)

For children hospitalized with an asthma exacerbation either documented or suspected to be associated with COVID-19 that is progressing, it might be decided to use one of the agents currently being considered in adults, for example, hydroxychloroquine.(40,41) or to seek compassionate release of remdesivir. There is no current data on the safety and efficacy of these agents in children and thus should be discussed in the setting of the hospital policy.(42,43) Although dosage of these medications in adolescents may be similar to adults, the appropriate adjustment for children under 12 years remains to be defined.
Go to:

Ongoing Challenges during COVID-19

Medication shortages. There is a growing medication shortage across North America, including asthma medications such as albuterol.(39) In many cases, such as with albuterol, these medications increasingly are being used in confirmed or suspected COVID-19 patients to help with respiratory issues. To help combat the shortage of albuterol specifically, the US Food and Drug Administration (FDA) approved the first generic albuterol inhaler on April 8,2020.(44) If faced with albuterol shortage, other available options include substituting other short acting beta-agonists, using an expired albuterol inhaler, and ensuring good asthma control which reduces the need for reliever medications in general.(9,39) Many of the substitute short acting beta-agonists are dry powder inhalers (diskus or turbuhaler) and as such children often need to be at least 6 years of age to produce enough inspiratory force to use these devices properly.(9,45) For adolescents 12 years and older, another option is ICS-formoterol for both maintenance and relief therapy as supported by the Global Initiative for Asthma 2019 update.(46,47) Nebulized albuterol should only be considered as a last resort, and proper infection prevention protocols need to be followed.(8,9,31) If no other medications are available, epinephrine inhalers might be considered as well, if used prudently.

Virtual visits. With the need for significant healthcare resource reallocation, as well as shortages of PPE, much of the allergy/immunology specialty has converted to largely virtual visits, or visit deferral, during COVID-19.(8) Due to the need for almost exclusively virtual visits at this time, having a peak flow meter in homes may be helpful to diagnose an acute exacerbation at home, by comparing baseline measurements with those during highly symptomatic times. There are several advantages to virtual visits, including access to specialists, removing the transportation barrier required for an in-person visit, allowing those too sick to travel to connect with a healthcare provider, and most importantly in the current context, prevention of infection transmission with in-person visits.(48)

Virtual visits should be prioritized for children who have poorly controlled asthma, have worsening asthma symptoms, or who have required dose escalations of their asthma medications in the past several months’ time.(8) It is recommended that follow-up visits for children with mild-to-moderate or well-controlled asthma be postponed during COVID-19, or converted to virtual visits if time permits.(8) It also is recommended that children of any asthma severity who have been well controlled for the past 6-12 months (no ER visits, <1 OCS dose, <2 exacerbations in the past 6-12 months) have visits deferred or converted to virtual visits (time permitting).(8) For children with moderate to severe asthma exacerbations, an in-person visit likely is necessary but as noted in the joint North American guideline on COVID-19 and allergy contingency planning, ‘If the allergy/ immunology office does not have PPE available, it would be recommended that no patients with a co-potential for an asthma exacerbation and COVID-19 be seen at that office; the patient should instead be seen at another facility capable of COVID-19 isolation which is staffed and equipped to assess and manage asthma.’(8) Recommendations may be adjusted over time, based on the duration of COVID-19 and the time required for physical distancing.

Asthma Clinical Trials. It is currently recommended that entry into any asthma clinical trial be suspended during COVID-19.(8) For asthmatic children already participating in clinical trials, consideration could be given to virtual visits if possible.(8) Procedures that require forced expiratory maneuvers such as spirometry, methacholine challenge or induced sputum samples should be postponed in order to minimize staff risk and potential room contamination. Medication withdrawal as part of research protocols also should be deferred to a later time. Consideration should be given to telephone or telemedicine visits in order to limit exposure to a medical setting.

Impact of Social Determinants of Health on Asthma and COVID-19. There are many social determinants of health that have an impact on pediatric asthma morbidity including caregiver income, physical environment including exposure to second-hand smoke, access to health services, and race/ethnicity.(49, 50, 51) There is likely an interplay between some of these social determinants of health and the impact of COVID-19 on children with asthma. It has been suggested that exposure to second-hand smoke increases COVID-19 morbidity.(52,53) Of those hospitalized in the US for COVID-19, data from the CDC indicates that 33.1% were non-Hispanic black, while they only make up 18% of the catchment area population.(3) A recent editorial notes that low-income families are at higher risk of COVID-19 as low income jobs mostly can’t be performed remotely, often don’t pay sick days, are often not associated with insurance benefits and as a result it may not be possible for these families to afford the steps necessary for physical distancing.(54)

Although the relationships between these variables needs to be further elucidated, it is possible that measures that impact social determinants of health, such as reducing exposure to second-hand smoke or improving healthcare access in low income neighborhoods, may improve prognosis in children with asthma who contract COVID-19. In addition, these families could benefit from counseling on having the appropriate amount of medications available for home during this period of restricted travel. In addition, they should check medications to be sure that none is expired.

Impact of COVID Restrictions. It is possible that children may not be severely affected by SARS-CoV-2 for some undefined reason to date, but they can still be carriers and could transmit virus to vulnerable people, including elderly relatives. Therefore, social distancing has included children, which has necessitated discontinuing school. It remains to be determined what impact this step has on children including those children with asthma. Often parents will discontinue medications in children during the summer months because they are doing well and they are out of school.(55) However, this year is different, because school was discontinued during the spring season, a time of seasonal allergen exacerbation and viral infection. School adds a certain structure to the day and there is some level of administration of asthma medication administration around the school day. Clinicians and parents should observe for potential breakdowns in adherence to controlling medications, especially in families in chaotic circumstances. The impact on education of home schooling, especially in families that lack an organizational structure remains to be seen. Finally, it has been suggested that school closure will increase the risk of childhood obesity, a known risk factor for worsening asthma.(56) Whether this occurs, and how this influences asthma control, also is yet unknown.

Conclusion

In the face of unchartered territory and unprecedented times, there remains much to be learned about the impact of pediatric asthma on the course of SARS-CoV-2 virus infection. Although adult data suggest that asthma is a risk factor for COVID-19 morbidity and mortality such a risk in children is unclear. Differentiating COVID-19 from worsening asthma, or an asthma exacerbation, is challenging. As a result, pediatricians and families have an essential role in ensuring that children with asthma maintain good asthma control during this time. Children and adolescents with asthma should remain on their current asthma medications and practice physical distancing, regular handwashing, and aeroallergen avoidance. Treatment of asthma exacerbations should include oral corticosteroids if required. Nebulized medications are not recommended at this time due to increased risk of viral transmission. Healthcare providers should remain alert for changing policies and recommendations knowledge advances.

WAF would like to thank the following for granting permission

Elsevier

Elissa M. Abrams, MD, MPH?
Department of Pediatrics, Section of Allergy and Clinical Immunology, University of Manitoba
Department of Pediatrics, Division of Allergy and Immunology, University of British Columbia
Stanley J. Szefler, MD
The Breathing Institute, Children’s Hospital Colorado and Section of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO

Toxicants and Asthma – Recognizing Health Advocates and Champions for Asthmatics Everywhere

Toxicants and Asthma – Recognizing Health Advocates and Champions for Asthmatics Everywhere

“Polycyclic aromatic hydrocarbons, or PAHs — Exposure can come from breathing car exhaust, fossil fuel combustion, cigarette smoke, and wood smoke, among other routes. The toxicants were linked to problems such as reduced birth weight, asthma, and lower IQ.” Frederica Perera, Ph.D., Renowned environmental health scientist.

On behalf of the Asthma community around the globe, the World Asthma Foundation (WAF) salutes Frederica Perera as she is being honored for pioneering research, community engagement.

The NIEHS Spirit Lecture Awardee collaborates with disadvantaged groups to study how chemicals affect children and other vulnerable people.

Renowned environmental health scientist Frederica Perera, Ph.D., delivered the 2020 NIEHS Spirit Lecture on Mar. 5. Her talk was titled “Translational Research to Prevent Environmental Threats to Children: From Chemicals to Climate Change.”

Frederica Perera, Ph.D. stands at podium “NIEHS has been the main, visionary funder of our work on children’s environmental health. It’s so important to our field to have this enlightened support,” said Perera. (Photo courtesy of Steve McCaw)

Perera is a Columbia University professor and the founding director of the school’s Center for Children’s Environmental Health, which is co-funded by NIEHS. Her work focuses on pregnant women, children, and minority groups, who can be especially vulnerable to pollution.

“She is internationally recognized as a pioneer in the field of molecular epidemiology as it relates to better understanding how problems in the environment can lead to adverse health effects and disease,” said NIEHS Acting Director Rick Woychik, Ph.D.
Early-life vulnerability

In the late 1970s, after learning about an environmental disaster in Minamata Bay, Japan, Perera became inspired to pursue a scientific career in environmental health.
Rick Woychik, Ph.D. smiles at the audience from the podium “Dr. Perera has been a prolific author, with over 330 publications,” noted Woychik. (Photo courtesy of Steve McCaw)

“Women there had been eating fish that were very polluted by mercury from industrial sources,” she told the audience. “The women were fine, but their children had serious cerebral palsy-like symptoms and intellectual disorders.”

“There are 82 billion neurons in the average brain, but almost all were formed before we were born,” she said. “You can imagine how highly choreographed and complex this development is over a short time window, and how readily any external exposure — whether a physical toxicant or psychosocial stressor — could disrupt these processes.”
Frederica Perera, Ph.D. speaks to a large audience A packed audience listened closely to Perera’s lecture. (Photo courtesy of Steve McCaw)
Health effects over time

At Columbia, Perera and her colleagues seek to understand how early-life chemical exposures affect children’s health and brain development, and they look for potential long-term problems. The scientists follow cohorts of mother-child pairs in New York City (NYC), Poland, and China, tracking health effects of various substances over time.

In NYC, participants come from low-income African-American and Dominican households. Some findings from that cohort include the following.

Chlorpyrifos — Prenatal exposure to this insecticide was associated with lower birth weight, memory problems, and Parkinson’s Disease-like changes.
Phthalates — Found in cosmetics and plastic packaging, these chemicals were linked to reduced IQ in children who had been exposed to high concentrations prenatally.
Polybrominated diphenyl ethers, or PBDEs — These flame retardants were linked to reduced IQ in children who had high concentrations at birth.
Polycyclic aromatic hydrocarbons, or PAHs — Exposure can come from breathing car exhaust, fossil fuel combustion, cigarette smoke, and wood smoke, among other routes. The toxicants were linked to problems such as reduced birth weight, asthma, and lower IQ.

Many factors at play

According to Perera, understanding the effects of such exposures often is complicated by other factors, including genetics, nutrition, socioeconomic status, and climate change. She said that despite that complexity, studying individual chemicals still is beneficial.

“Most diseases require a set of sufficient causes,” Perera explained. “If we can take one of those causes out, it would be possible to prevent a child from developing a disease. Environmental exposures, by their very nature, are preventable once we identify them as harmful.”

Perera said that lowering the risks of environmental exposures will require a mix of regulatory policies, market reforms, and better data on the health and economic benefits of pollution mitigation.
Special award

“It’s a real honor for me to have the privilege to introduce Dr. Perera as this year’s recipient of the NIEHS Spirit Lecture Award,” said Woychik.

Angela King-Herbert, D.V.M. stands by Frederica Perera, Ph.D. holding an award Angela King-Herbert, D.V.M., Spirit Lecture Committee member and head of the National Toxicology Program Laboratory Animal Medicine Group, presented the award to Perera. (Photo courtesy of Steve McCaw)

The award recognizes outstanding women who balance their careers with public engagement, volunteering, and mentorship.

“She works with many different community groups to address the safety and health of children,” he said. “Dr. Perera is a fabulous communicator and is doing cutting-edge, exciting research.”

(Payel Sil, Ph.D., is an Intramural Research Training Award fellow in the NIEHS Inflammation and Autoimmunity Group.)

Asthma Flare-ups in Children

Short-term increases in inhaled steroid doses do not prevent asthma flare-ups in children

NIH-funded findings challenge common practice of increasing doses at early signs of worsening symptoms.

Researchers have found that temporarily increasing the dosage of inhaled steroids when asthma symptoms begin to worsen does not effectively prevent severe flare-ups, and may be associated with slowing a child’s growth, challenging a common medical practice involving children with mild-to-moderate asthma.

The study, funded by the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, will appear online on March 3 in the New England Journal of Medicine (NEJM) to coincide with its presentation at a meeting of the 2018 Joint Congress of the American Academy of Allergy, Asthma & Immunology (AAAAI) and the World Allergy Organization (WAO) in Orlando, Florida. It will appear in print on March 8th.

Asthma flare-ups in children are common and costly, and to prevent them, many health professionals recommend increasing the doses of inhaled steroids from low to high at early signs of symptoms, such as coughing, wheezing, and shortness of breath. Until now, researchers had not rigorously tested the safety and efficacy of this strategy in children with mild-to-moderate asthma.

“These findings suggest that a short-term increase to high-dose inhaled steroids should not be routinely included in asthma treatment plans for children with mild-moderate asthma who are regularly using low-dose inhaled corticosteroids,” said study leader Daniel Jackson, M.D., associate professor of pediatrics at the University of Wisconsin School of Medicine and Public Health, Madison, and an expert on childhood asthma. “Low-dose inhaled steroids remain the cornerstone of daily treatment in affected children.”

The research team studied 254 children 5 to 11 years of age with mild-to-moderate asthma for nearly a year. All the children were treated with low-dose inhaled corticosteroids (two puffs from an inhaler twice daily). At the earliest signs of asthma flare-up, which some children experienced multiple times throughout the year, the researchers continued giving low-dose inhaled steroids to half of the children and increased to high-dose inhaled steroids (five times the standard dose) in the other half, twice daily for seven days during each episode.

Though the children in the high-dose group had 14 percent more exposure to inhaled steroids than the low-dose group, they did not experience fewer severe flare-ups. The number of asthma symptoms, the length of time until the first severe flare-up, and the use of albuterol (a drug used as a rescue medication for asthma symptoms) were similar between the two groups.

Unexpectedly, the investigators found that the rate of growth of children in the short-term high-dose strategy group was about 0.23 centimeters per year less than the rate for children in the low-dose strategy group, even though the high-dose treatments were given only about two weeks per year on average. While the growth difference was small, the finding echoes previous studies showing that children who take inhaled corticosteroids for asthma may experience a small negative impact on their growth rate. More frequent or prolonged high-dose steroid use in children might increase this adverse effect, the researchers caution.

The study did not include children with asthma who do not take inhaled steroids regularly, nor did it include adults.

“This study allows caregivers to make informed decisions about how to treat their young patients with asthma,” said James Kiley, Ph.D., director of the NHLBI’s Division of Lung Diseases. “Trials like this can be used in the development of treatment guidelines for children with asthma.”

This work was supported by the following NHLBI grants: HL098102, HL098075, HL098090, HL098177, HL098098, HL098107, HL098112, HL098103, HL098115, HL098096. The NHLBI-funded study, Step Up Yellow Zone Inhaled Corticosteroids to Prevent Exacerbations (STICS) (NCT02066129), is part of the NHLBI AsthmaNet program, a nationwide clinical research network that explores new approaches in treating asthma from childhood to adulthood.

Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at https://www.nhlbi.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.

New guidelines: Introduce peanuts to infants early to prevent allergies

By Rob Goodier (Reuters Health) – Parents may be able to reduce the chance that their children will develop peanut allergies by introducing the food early on, as young as four to six months of age, experts now say. The timing and method should depend on the infant’s risk of a peanut allergy, according to doctors who presented a preview of updated guidelines today in San Francisco at the annual meeting of the American College of Allergy, Asthma and Immunology. “Guidance regarding when to introduce peanut into the diet of an infant is changing, based on new research that shows that early introduction around 4-6 months of life, after a few other foods have been introduced into the infant’s diet, is associated with a significantly reduced risk of such infants developing peanut allergy,” said Dr. Matthew Greenhawt, a pediatrician and co-director of the Food Challenge and Research Unit at Children’s Hospital Colorado in Aurora, Colorado, who coauthored the update.

View full post on Health News Headlines – Yahoo News