Asthma Rates and Mask – Good or Bad?

65% drop in serious asthma cases due to mask-wearing Israeli hospital reports

The Times of Israel reports that the Sheba Medical, an Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing.

Here’s the 411 according to published reports:

• A study conducted by Sheba Medical Center found that the past year saw a 65 percent drop in serious asthma cases that required hospitalization.

• The drop was credited to widespread mask-wearing during the COVID-19 pandemic, which also helped decrease the spread of viruses such as the flu in the past year.

• By wearing masks, people are also less likely to suffer from seasonal allergies, as face coverings prevent pollen from flowers, trees, and grass coming into contact with the nose and mouth.

• The report follows Israel’s decision to drop the requirement to wear masks outdoors.

Israeli hospital reports 65% drop in serious asthma cases due to mask-wearing Jerusalemites wearing face masks walk in Jerusalem on February 04, 2021.

New Treatment for Asthma? Airway Collagen Affects Breathing

A new study finds that manipulating the stiffness of the collagen in the airway has an effect on breathing.

The airway consists of both a conducting region (larynx, trachea, bronchi, bronchioles) where air is humidified, warmed, and cleaned and a respiratory zone where gas exchange occurs. The airway is directly and continuously exposed to both macromechanical and micromechanical forces.

Macromechanics is the study of organ-level mechanical and material properties. Intrathoracic respiratory forces, perfusion, and cough represent some of the dynamic macromechanical forces exerted on the respiratory system. As the airway is composed of heterogeneous components (chondrocytes, epithelium, endothelium, muscle, extracellular matrix (ECM)), these constituents can be individually quantified using micromechanics.

Micromechanical properties drive the mechanotransduction in the airway, driving cell–cell and cell–matrix interactions [1].

Collagen is most abundant component in the airway extracellular matrix. It is also the primary component that determines mechanical properties of the airway. This discovery around the structure of airway cells could lead to a new treatment for asthma.

What You Need to Know

Abnormal airway collagen deposition is associated with the pathogenesis and progression of airway disease according to the researchers, Lumei Liu, Brooke Stephens, Maxwell Bergman, Anne May, and Tendy Chiang, in Columbus, Ohio.

Liu is with the Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital in Columbus, OH.

Key Takeaways

  • collagen has a major role in airway mechanics
  • macro- and micro-scale approaches can quantify airway mechanics
  • collagen deposition affects pathologic changes in airway diseases.

The World Asthma Foundation would like to thank these experts for their research for their understanding how collagen affects healthy airway tissue mechanics is essential. The impact of abnormal collagen deposition and tissue stiffness has been an area of interest in pulmonary diseases such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease. The researchers seek to provide biomechanical clues for targeted therapies and regenerative medicine to treat airway pathology and address airway defects.

airway collagen affects breathing. Image by OpenClipart-Vectors from Pixabay
Airway collagen affects breathing. Image by OpenClipart-Vectors from Pixabay

World Asthma Day – May 5, 2021 – Spread the Word

World Asthma Foundation is supporting care of Asthma and asthmatics around the world. Please help those that suffer by spreading the word.

The WAF is doing it’s part by:

* Announcing the Defeating Asthma Project with the aim of shining a spotlight on getting to a cure

* Asthma education and advocacy for people with asthma who suffer

World Asthma Day May 5, 2021 Spread the Word

“We can move the needle by taking action now to make the difference for those that suffer from Asthma.” – Alan Gray, Director WAF Australia

We’ve hunkered down close to home here at the WAF. While doing so, we’re poring over volumes of available Asthma research data to share our understanding of the root causes of Asthma with emphasis on Severe Asthma.
Our ultimate goal is to understand the root cause of Severe Asthma (already considered a pandemic by many) while we aim for a cure. By banding together with other Asthmatics, including those that care about Asthmatics and clinicians that treat, we can defeat Asthma and we can do so now.

Why this Matters:

Asthma is not one disease but many and the causes underlying its development and manifestations are many including environmental issues

Asthma has reached pandemic levels around the globe

Asthma is a chronic lung disease that affects over 300 million worldwide

The projected rate will reach 400 million by 2025

Environmental exposures have been proven to play a significant role in the development of asthma and as triggers

Asthma is believed to be determined by a complicated set of one’s own genetics and environmental exposures including a multitude of toxic chemicals and the overuse of antibiotics

In the U.S., African Americans are almost three times more likely to die from asthma-related causes than the white population

Australia reported the highest rate of doctor diagnosed, clinical/treated asthma, and wheezing

Defining asthma remains an ongoing challenge and innovative methods are needed to identify, diagnose, and accurately classify asthma at an early stage to most effectively implement optimal management and reduce the health burden attributable to asthma

According to the U.S. Centers for Disease Control, The total annual cost of asthma in the United States, including medical care, absenteeism and mortality, was $81.9 Billion a year.

Gut and Lung Connection to Asthma – Rodney Dietert, PhD

In this fifth in a series of interviews with Rodney Dietert PhD, he talks about communication between the gut and lung. Dr. Dietert is Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life we learn about:

* The Gut and lung communication and its relationship to Asthma

World Asthma FoundationDefeating Asthma Series uncovers New Hope for Asthma Managementant

Asthmatics: Our understanding of Asthma and the way we treat it may soon be radically different from what currently exists, due to new research on the human microbiome and how the microbiome affects asthma.

Interview

World Asthma Foundation: Research into the Microbiome and its relationship to health has improved significantly in the last few years. For example, we now know about the relationship between the gut and health. We’ve also learned about communication between the gut and the lung and the impact on Asthma. Dr. Dietert, so there’s some crosstalk, right?

Video interview: Asthma Connection to Gut and Lung Cross Talk – Rodney Dietert, PhD

Dr. Dietert: Tremendous crosstalk, absolutely tremendous. You’re correct that if you’re looking at endpoints, something like risk of asthma or management of asthma, then you really, at a minimum, are going to focus both on the respiratory system microbiome and the gut microbiome. That’s not necessarily the exclusion of others but those two are really important. Just like the gut microbiome can affect the brain, it can affect behavior, mood. You don’t need lots of hardcore meds as an antidepressant when you’ve got the solution sitting right in your gut in terms of the microbiome.

With the respiratory system, you’ve got both the local microbes being extremely important but you have crosstalk, you have chemical interactions that are originating in the gut that are affecting the respiratory system as well.

World Asthma Foundation: Dr. Dietert, we certainly thank you for your time, all that you do for the microbiome and the community. Good afternoon, and thanks again.

Dr. Dietert: Well, and thank you for all you do with the World Asthma foundation, Bill. Pleasure.

To learn more about Dr. Dietert, go here.

Gut and Lung crosstalk interview with Rodney Dietert.

Can we replace missing microbes? – Rodney Dietert Ph.D.

Defeating Asthma Series uncovers New Hope for Asthma Managementant

In this fourth in a series of interviews with Rodney Dietert, PhD Cornell University Professor Emeritus, Health Scientist Head of Translational Science + Education for SEED and the Author of the Human Super-Organism How the Microbiome is Revolutionizing the Pursuit of a Healthy Life we learn about:

* Replacing replacing missing microbes

World Asthma Foundation: Dr. Dietert can we replace missing microbes?

Dr. Dietert: There are products available and we have used a product that is a missing skin microbe. It’s very important in certain metabolic pathways that actually help provide health benefits that are beyond the skin.

Video: Can we replace missing microbes? – Rodney Dietert Ph.D.

That was one that basically was recovered in a very interesting way that involved essentially marriages between some indigenous people and others that were westernized and the microbe being able to not necessarily be removed from a remote location but being able to be a part of what we would call genetically an F1.

There are opportunities to retrieve some missing microbes. I think Dr. Blaser and his wife have done incredible work by the way as well, very much attuned and will have a lot to offer on what’s missing and where is it and can it be retrieved. I think the answer is yes. There are commercial products and we’ve actually used some of them that are the missing microbes.

It’s important to recognize that some of the indigenous peoples that have not had the same environmental experiences that we’ve had, and the same contact with modernization have microbes that are exceptionally important for health are helping prevent obesity and asthma and diabetes in those populations. Those microbes are really the protectors.

Yes, I think that reintroducing those to the extent it is possible is an extremely worthwhile effort.

I would point out that it’s a fragile situation because I think from Dr. Blaser and his wife’s work, you will learn that the indigenous populations in South America if they go into the urban areas, if their children go into the urban areas, start adopting the diet and lifestyle there, it takes no time at all for them to acquire the same set of diseases that we see so prevalent here.

World Asthma Foundation: With that, Dr. Dietert, we certainly thank you for your time, all that you do for the microbiome and the community. Good afternoon, and thanks again.

Dr. Dietert: Well, and thank you for all you do with the World Asthma foundation, Bill. Pleasure.

Asthma and Indoor Air Pollution:

Key insights for Asthmatics:

  • Makes Asthma Worse
  • Significant Association with Exacerbations
  • Among this panel of relatively moderate to severe asthmatics, the respiratory irritants produced by several domestic combustion sources were associated with increased morbidity.
  • Although there is abundant clinical evidence of asthmatic responses to indoor aeroallergens, the symptomatic impacts of other common indoor air pollutants from gas stoves, fireplaces, and environmental tobacco smoke have been less well characterized. These combustion sources produce a complex mixture of pollutants, many of which are respiratory irritants.
  • Results of an analysis of associations between indoor pollution and several outcomes of respiratory morbidity in a population of adult asthmatics residing in the U.S. Denver, Colorado, metropolitan area. A panel of 164 asthmatics recorded in a daily diary the occurrence of several respiratory symptoms, nocturnal asthma, medication use, and restrictions in activity, as well as the use of gas stoves, wood stoves, or fireplaces, and exposure to environmental tobacco smoke.
  • Multiple logistic regression analysis suggests that the indoor sources of combustion have a statistically significant association with exacerbations of asthma. For example, after correcting for repeated measures and autocorrelation, the reported use of a gas stove was associated with moderate or worse shortness of breath (OR, 1.60; 95% CI, 1.11-2.32), moderate or worse cough (OR, 1.71; 95% CI, 0.97-3.01), nocturnal asthma (OR, 1.01; 95% CI, 0.91-1.13), and restrictions in activity (OR, 1.47; 95% CI, 1.0-2.16
  • The WAF Editorial Board wishes to thank and acknowledge B D Ostro 1 , M J Lipsett, J K Mann, M B Wiener, J Selner
    California Environmental Protection Agency, Berkeley for their contribution to Asthma education and research.

Gut Health and Asthma

The gut and lungs are anatomically distinct, but potential anatomic communications and complex pathways involving their respective microbiota have reinforced the existence of a gut–lung axis (GLA). Compared to the better-studied gut microbiota, the lung microbiota, only considered in recent years, represents a more discreet part of the whole microbiota associated to human hosts. Gut health is not the only area to think about.

While the majority of studies focused on the bacterial component of the microbiota in healthy and pathological conditions, recent works highlighted the contribution of fungal and viral kingdoms at both digestive and respiratory levels. Moreover, growing evidence indicates the key role of inter-kingdom crosstalks in maintaining host homeostasis and in disease evolution.

In fact, the recently emerged GLA concept involves host–microbe as well as microbe–microbe interactions, based both on localized and long-reaching effects. GLA can shape immune responses and interfere with the course of respiratory diseases. In this review, we aim to analyze how the lung and gut microbiota influence each other and may impact on respiratory diseases.

Due to the limited knowledge on the human virobiota, we focused on gut and lung bacteriobiota and mycobiota, with a specific attention on inter-kingdom microbial crosstalk. These are able to shape local or long-reached host responses within the GLA.

Introduction

Recent advances in microbiota explorations have led to an improved knowledge of the communities of commensal microorganisms within the human body. Human skin and mucosal surfaces are associated with rich and complex ecosystems (microbiota) composed of bacteria (bacteriobiota), fungi (mycobiota), viruses (virobiota), phages, archaea, protists, and helminths (Cho and Blaser, 2012).

The role of the gut bacteriobiota in local health homeostasis and diseases is being increasingly investigated, but its long-distance impacts still need to be clarified (Chiu et al., 2017). Among the relevant inter-organ connections, the gut–lung axis (GLA) remains less studied than the gut–brain axis.

So far, microbiota studies mainly focused on the bacterial component, neglecting other microbial kingdoms. However, the understanding of mycobiota involvement in human health and inter-organ connections should not be overlooked (Nguyen et al., 2015; Enaud et al., 2018).

Viruses are also known to be key players in numerous respiratory diseases and to interact with the human immune system, but technical issues still limit the amount of data regarding virobiota (Mitchell and Glanville, 2018). Therefore, we will focus on bacterial and fungal components of the microbiota and their close interactions that are able to shape local or long-reached host responses within the GLA.

While GLA mycobiota also influences chronic gut diseases such as IBD, we will not address this key role in the present review: we aimed at analyzing how lung and gut bacteriobiota and mycobiota influence each other, how they interact with the human immune system, and their role in respiratory diseases.

Gut Health

Microbial Interactions Within the Gut–Lung Axis

The gut microbiota has been the most extensively investigated in gut health. The majority of genes (99%) amplified in human stools are from bacteria, which are as numerous as human cells and comprise 150 distinct bacterial species, belonging mainly to Firmicutes and Bacteroidetes phyla. Proteobacteria, Actinobacteria, Cyanobacteria, and Fusobacteria are also represented in healthy people (Sekirov et al., 2010; Human Microbiome Project Consortium, 2012).

More recently, fungi have been recognized as an integral part of our commensal flora, and their role in health and diseases is increasingly considered (Huffnagle and Noverr, 2013; Huseyin et al., 2017). Fungi are about 100 times larger than bacteria, so even if fungal sequences are 100 to 1,000 times less frequent than bacterial sequences, fungi must not be neglected in the gastrointestinal ecosystem.

Mycobiota Diversity

In contrast with the bacteriobiota, the diversity of the gut mycobiota in healthy subjects is limited to few genera, with a high prevalence of Saccharomyces cerevisiae, Malassezia restricta, and Candida albicans (Nash et al., 2017).

Note from the WAF editorial board. We wish to acknowledge and thank Raphaël Enaud, Renaud Preve, Eleonora Ciarlo, Fabien Beaufils, Gregoire Wieërs, Benoit Guery and Laurence Delhaes for their support of Asthma education and research. For more information about Asthma or Gut Health, visit the World Asthma Foundation.

Although often dichotomized due to technical and analysis sequencing issues, critical interactions exist between bacteriobiota and mycobiota (Peleg et al., 2010). The most appropriate approach to decipher the role of gut microbiota is therefore considering the gut as an ecosystem in which inter-kingdom interactions occur and have major implications as suggested by the significant correlations between the gut bacteriobiota and mycobiota profiles among healthy subjects (Hoffmann et al., 2013).

Yeasts

Yeasts, e.g., Saccharomyces boulardii and C. albicans, or fungus wall components, e.g., ?-glucans, are able to inhibit the growth of some intestinal pathogens (Zhou et al., 2013; Markey et al., 2018). S. boulardii also produces proteases or phosphatases that inactivate the toxins produced by intestinal bacteria such as Clostridium difficile and Escherichia coli (Castagliuolo et al., 1999; Buts et al., 2006).

In addition, at physiological state and during gut microbiota disturbances (e.g., after a course of antibiotics), fungal species may take over the bacterial functions of immune modulation, preventing mucosal tissue damages (Jiang et al., 2017). Vice versa, bacteria can also modulate fungi: fatty acids locally produced by bacteria impact on the phenotype of C. albicans (Noverr and Huffnagle, 2004; Tso et al., 2018).

Microbiota

Beside the widely studied gut microbiota, microbiotas of other sites, including the lungs, are essential for host homeostasis and disease. The lung microbiota is now recognized as a cornerstone in the physiopathology of numerous respiratory diseases (Soret et al., 2019; Vandenborght et al., 2019).

Inter-Kingdom Crosstalk Within the Lung Microbiota

The lung microbiota represents a significantly lower biomass than the gut microbiota: about 10 to 100 bacteria per 1,000 human cells (Sze et al., 2012). Its composition depends on the microbial colonization from the oropharynx and upper respiratory tract through salivary micro-inhalations, on the host elimination abilities (especially coughing and mucociliary clearance), on interactions with the host immune system, and on local conditions for microbial proliferation, such as pH or oxygen concentration (Gleeson et al., 1997; Wilson and Hamilos, 2014).

The predominant bacterial phyla in lungs are the same as in gut, mainly Firmicutes and Bacteroidetes followed by Proteobacteria and Actinobacteria (Charlson et al., 2011). In healthy subjects, the main identified fungi are usually environmental: Ascomycota (Aspergillus, Cladosporium, Eremothecium, and Vanderwaltozyma) and Microsporidia (Systenostrema) (Nguyen et al., 2015; Vandenborght et al., 2019).

In contrast to the intestinal or oral microbiota, data highlighting the interactions between bacteria and fungi in the human respiratory tract are more scattered (Delhaes et al., 2012; Soret et al., 2019). However, data from both in vitro and in vivo studies suggest relevant inter-kingdom crosstalk (Delhaes et al., 2012; Xu and Dongari-Bagtzoglou, 2015; Lof et al., 2017; Soret et al., 2019).

Several Pathways

This dialogue may involve several pathways as physical interaction, quorum-sensing molecules, production of antimicrobial agents, immune response modulation, and nutrient exchange (Peleg et al., 2010). Synergistic interactions have been documented between Candida and Streptococcus, such as stimulation of Streptococcus growth by Candida, increasing biofilm formation, or enhancement of the Candida pathogenicity by Streptococcus (Diaz et al., 2012; Xu et al., 2014).

In vitro studies exhibited an increased growth of Aspergillus fumigatus in presence of Pseudomonas aeruginosa, due to the mold’s ability in to assimilate P. aeruginosa-derived volatile sulfur compounds (Briard et al., 2019; Scott et al., 2019). However, the lung microbiota modulation is not limited to local inter-kingdom crosstalk and also depends on inter-compartment crosstalk between the gut and lungs.
Microbial Inter-compartment Crosstalk

From birth throughout the entire life span, a close correlation between the composition of the gut and lung microbiota exists, suggesting a host-wide network (Grier et al., 2018). For instance, modification of newborns’ diet influences the composition of their lung microbiota, and fecal transplantation in rats induces changes in the lung microbiota (Madan et al., 2012; Liu et al., 2017).

Gut-Lung Interaction

The host’s health condition can impact this gut–lung interaction too. In cystic fibrosis (CF) newborns, gut colonizations with Roseburia, Dorea, Coprococcus, Blautia, or Escherichia presaged their respiratory appearance, and their gut and lung abundances are highly correlated over time (Madan et al., 2012). Similarly, the lung microbiota is enriched with gut bacteria, such as Bacteroides spp., after sepsis (Dickson et al., 2016).

Conversely, lung microbiota may affect the gut microbiota composition. In a pre-clinical model, influenza infection triggers an increased proportion of Enterobacteriaceae and decreased abundances of Lactobacilli and Lactococci in the gut (Looft and Allen, 2012). Consistently, lipopolysaccharide (LPS) instillation in the lungs of mice is associated with gut microbiota disturbances (Sze et al., 2014).

Although gastroesophageal content inhalations and sputum swallowing partially explain this inter-organ connection, GLA also involves indirect communications such as host immune modulation.

Gut–Lung Axis Interactions With Human Immune System

Gut microbiota effects on the local immune system have been extensively reviewed (Elson and Alexander, 2015). Briefly, the gut microbiota closely interacts with the mucosal immune system using both pro-inflammatory and regulatory signals (Skelly et al., 2019). It also influences neutrophil responses, modulating their ability to extravasate from blood (Karmarkar and Rock, 2013).

Receptor Signaling

Toll-like receptor (TLR) signaling is essential for microbiota-driven myelopoiesis and exerts a neonatal selection shaping the gut microbiota with long-term consequences (Balmer et al., 2014; Fulde et al., 2018). Moreover, the gut microbiota communicates with and influences immune cells expressing TLR or GPR41/43 by means of microbial associated molecular patterns (MAMPs) or short-chain fatty acids (SCFAs) (Le Poul et al., 2003).

Data focused on the gut mycobiota’s impact on the immune system are sparser. Commensal fungi seem to reinforce bacterial protective benefits on both local and systemic immunity, with a specific role for mannans, a highly conserved fungal wall component. Moreover, fungi are able to produce SCFAs (Baltierra-Trejo et al., 2015; Xiros et al., 2019). Therefore, gut mycobiota perturbations could be as deleterious as bacteriobiota ones (Wheeler et al., 2016; Jiang et al., 2017).

Lung Microbiota and Local Immunity

A crucial role of lung microbiota in the maturation and homeostasis of lung immunity has emerged over the last few years (Dickson et al., 2018). Colonization of the respiratory tract provides essential signals for maturing local immune cells with long-term consequences (Gollwitzer et al., 2014).

Pre-clinical studies confirm the causality between airway microbial colonization and the regulation and maturation of the airways’ immune cells. Germ-free mice exhibit increased local Th2-associated cytokine and IgE production, promoting allergic airway inflammation (Herbst et al., 2011).

Consistently, lung exposure to commensal bacteria reduces Th2-associated cytokine production after an allergen challenge and induces regulatory cells early in life (Russell et al., 2012; Gollwitzer et al., 2014). The establishment of resident memory B cells in lungs also requires encountering lung microbiota local antigens, especially regarding immunity against viruses such as influenza (Allie et al., 2019).

Interactions between lung microbiota and immunity are also a two-way process; a major inflammation in the lungs can morbidly transform the lung microbiota composition (Molyneaux et al., 2013).

Gut Health, Long-Reaching Immune Modulation Within Gut–Lung Axis

Beyond the local immune regulation by the site-specific microbiota, the long-reaching immune impact of gut microbiota is now being recognized, especially on the pulmonary immune system (Chiu et al., 2017).

The mesenteric lymphatic system is an essential pathway between the lungs and the intestine, through which intact bacteria, their fragments, or metabolites (e.g., SCFAs) may translocate across the intestinal barrier, reach the systemic circulation, and modulate the lung immune response (Trompette et al., 2014; Bingula et al., 2017; McAleer and Kolls, 2018).

SCFAs, mainly produced by the bacterial dietary fibers’ fermentation especially in case of a high-fiber diet (HFD), act in the lungs as signaling molecules on resident antigen-presenting cells to attenuate the inflammatory and allergic responses (Anand and Mande, 2018; Cait et al., 2018).

SCFA receptor–deficient mice show increased inflammatory responses in experimental models of asthma (Trompette et al., 2014). Fungi, including A. fumigatus, can also produce SCFAs or create a biofilm enhancing the bacterial production of SCFAs, but on the other hand, bacterial SCFAs can dampen fungal growth (Hynes et al., 2008; Baltierra-Trejo et al., 2015; Xiros et al., 2019). The impact of fungal production of SCFAs on the host has not been assessed so far.

Other Elements

Other important players of this long-reaching immune effect are gut segmented filamentous bacteria (SFBs), a commensal bacteria colonizing the ileum of most animals, including humans, and involved in the modulation of the immune system’s development (Yin et al., 2013). SFBs regulate CD4+ T-cell polarization into the Th17 pathway, which is implicated in the response to pulmonary fungal infections and lung autoimmune manifestations (McAleer et al., 2016; Bradley et al., 2017).

Recently, innate lymphoid cells, involved in tissue repair, have been shown to be recruited from the gut to the lungs in response to inflammatory signals upon IL-25 (Huang et al., 2018). Finally, intestinal TLR activation, required for the NF-?B–dependent pathways of innate immunity and inflammation, is associated with an increased influenza-related lung response in mice (Ichinohe et al., 2011).

Mechanisms

Other mechanisms may be involved in modulating the long-reaching immune response related to gut microbiota, exemplified by the increased number of mononuclear leukocytes and an increased phagocytic and lytic activity after treatment with Bifidobacterium lactis HN019 probiotics (Gill et al., 2001). Diet, especially fiber intake, which increases the systemic level of SCFAs, or probiotics influence the pulmonary immune response and thus impact the progression of respiratory disorders (King et al., 2007; Varraso et al., 2015; Anand and Mande, 2018).

The GLA immune dialogue remains a two-way process. For instance, Salmonella nasal inoculation promotes a Salmonella-specific gut immunization which depends on lung dendritic cells (Ruane et al., 2013). Respiratory influenza infection also modulates the composition of the gut microbiota as stated above. These intestinal microbial disruptions seem to be unrelated to an intestinal tropism of influenza virus but mediated by Th17 cells (Wang et al., 2014).

In summary, GLA results from complex interactions between the different microbial components of both the gut and lung microbiotas combined with local and long-reaching immune effects. All these interactions strongly suggest a major role for the GLA in respiratory diseases, as recently documented in a mice model (Skalski et al., 2018).
Gut–Lung Axis in Respiratory Diseases

Acute Infectious Diseases

Regarding influenza infection and the impact of gut and lung microbiota, our knowledge is still fragmentary; human data are not yet available. However, antibiotic treatment causes significantly reduced immune responses against influenza virus in mice (Ichinohe et al., 2011). Conversely, influenza-infected HFD-fed mice exhibit increased survival rates compared to infected controls thanks to an enhanced generation of Ly6c-patrolling monocytes. These monocytes increase the numbers of macrophages that have a limited capacity to produce CXCL1 locally, reducing neutrophil recruitment to the airways and thus tissue damage. In parallel, diet-derived SCFAs boost CD8+ T-cell effector function in HFD-fed mice (Trompette et al., 2018).

Both lung and gut microbiota are essential against bacterial pneumonia. The lung microbiota is able to protect against respiratory infections with Streptococcus pneumoniae and Klebsiella pneumoniae by priming the pulmonary production of granulocyte-macrophage colony-stimulating factor (GM-CSF) via IL-17 and Nod2 stimulation (Brown et al., 2017).

Gut Health and Lung Bacterial Infections

The gut microbiota also plays a crucial role in response to lung bacterial infections. Studies on germ-free mice showed an increased morbidity and mortality during K. pneumoniae, S. pneumoniae, or P. aeruginosa acute lung infection (Fagundes et al., 2012; Fox et al., 2012; Brown et al., 2017). The use of broad-spectrum antibiotic treatments, to disrupt mouse gut microbiota, results in worse outcome in lung infection mouse models (Schuijt et al., 2016; Robak et al., 2018).

Mechanistically, alveolar macrophages from mice deprived of gut microbiota through antibiotic treatment are less responsive to stimulation and show reduced phagocytic capacity (Schuijt et al., 2016). Interestingly, priming of antibiotic-treated animals with TLR agonists restores resistance to pulmonary infections (Fagundes et al., 2012). SFBs appear to be an important gut microbiota component for lung defense against bacterial infection thanks to their capacity to induce the production of the Th17 cytokine, IL-22, and to increase neutrophil counts in the lungs during Staphylococcus aureus pneumonia (Gauguet et al., 2015).

Modulating chronic infectious diseases will similarly depend on gut and lung microbiotas. For instance, Mycobacterium tuberculosis infection severity is correlated with gut microbiota (Namasivayam et al., 2018).

Chronic Respiratory Diseases

Multiple studies have addressed the impact of gut and lung microbiota on chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, and CF (Table 1).

Table 1. Gut–lung axis in human chronic respiratory diseases. Gut Health.

Decreased lung microbiota diversity and Proteobacteria expansion are associated with both COPD severity and exacerbations (Garcia-Nuñez et al., 2014; Wang et al., 2016, 2018; Mayhew et al., 2018). The fact that patients with genetic mannose binding lectin deficiency exhibit a more diverse pulmonary microbiota and a lower risk of exacerbation suggests not only association but also causality (Dicker et al., 2018).

Besides the lung flora, the gut microbiota is involved in exacerbations, as suggested by the increased gastrointestinal permeability in patients admitted for COPD exacerbations (Sprooten et al., 2018). Whatever the permeability’s origin (hypoxemia or pro-inflammatory status), the level of circulating gut microbiota–dependent trimethylamine-N-oxide has been associated with mortality in COPD patients (Ottiger et al., 2018). This association being explained by comorbidities and age, its impact per se is not guaranteed. Further studies are warranted to investigate the role of GLA in COPD and to assess causality.

Early Life Perturbation

Early-life perturbations in fungal and bacterial gut colonization, such as low gut microbial diversity, e.g., after neonatal antibiotic use, are critical to induce childhood asthma development (Abrahamsson et al., 2014; Metsälä et al., 2015; Arrieta et al., 2018).

This microbial disruption is associated with modifications of fecal SCFA levels (Arrieta et al., 2018). Causality has been assessed in murine models. Inoculation of the bacteria absent in the microbiota of asthmatic patients decreases airways inflammation (Arrieta et al., 2015).

Fungi

Furthermore, Bacteroides fragilis seems to play a major role in immune homeostasis, balancing the host systemic Th1/Th2 ratio and therefore conferring protection against allergen-induced airway disorders (Mazmanian et al., 2005; Panzer and Lynch, 2015; Arrieta et al., 2018). Nevertheless, it is still not fully deciphered, as some studies conversely found that an early colonization with Bacteroides, including B. fragilis, could be an early indicator of asthma later in life (Vael et al., 2008).

Regarding fungi, gut fungal overgrowth (after antibiotic administration or a gut colonization protocol with Candida or Wallemia mellicola) increases the occurrence of asthma via IL-13 without any fungal expansion in the lungs (Noverr et al., 2005; Wheeler et al., 2016; Skalski et al., 2018). The prostaglandin E2 produced in the gut by Candida can reach the lungs and promotes lung M2 macrophage polarization and allergic airway inflammation (Kim et al., 2014).

Mouse & Human Gut Health

In mice, a gut overrepresentation of W. mellicola associated with several intestinal microbiome disturbances appears to have long-reaching effects on the pulmonary immune response and severity of asthma, by involving the Th2 pathways, especially IL-13 and to a lesser degree IL-17, goblet cell differentiation, fibroblasts activation, and IgE production by B cells (Skalski et al., 2018).

These results indicate that the GLA, mainly through the gut microbiota, is likely to play a major role in asthma.

Cystic Fibrosis and Gut Health

In CF patients, gut and lung microbiota are distinct from those of healthy subjects, and disease progression is associated with microbiota alterations. (Madan et al., 2012; Stokell et al., 2015; Nielsen et al., 2016). Moreover, the bacterial abundances at both sites are highly correlated and have similar trends over time (Madan et al., 2012). This is especially true regarding Streptococcus, which is found in higher proportion in CF stools, gastric contents, and sputa. (Al-Momani et al., 2016; Nielsen et al., 2016).

Moreover, CF patients with a documented intestinal inflammation exhibit a higher Streptococcus abundance in the gut (Enaud et al., 2019). That suggests the GLA’s involvement in intestinal inflammation. Of note, gut but not lung microbiota alteration is associated with early-life exacerbations. Some gut microbiota perturbations, such as a decrease of Parabacteroides, are predictive of airway colonization with P. aeruginosa (Hoen et al., 2015).

Furthermore, oral administration of probiotics to CF patients leads to a decreased number of exacerbations (Anderson et al., 2016). While the mycobiota has been recently studied in CF (Nguyen et al., 2015; Soret et al., 2019), no data on the role of the fungal component of the GLA are currently available in CF. This deserves to be more widely studied.

Improving Health in the Gut

The role of inter-compartment and inter-kingdom interactions within the GLA in those pulmonary diseases now has to be further confirmed and causality assessed. Diet, probiotics, or more specific modulations could be, in the near future, novel essential tools in therapeutic management of these respiratory diseases.

Conclusion

The gut–lung axis or GLA has emerged as a specific axis with intensive dialogues between the gut and lungs, involving each compartment in a two-way manner, with both microbial and immune interactions (Figure 1). Each kingdom and compartment plays a crucial role in this dialogue, and consequently in host health and diseases. The roles of fungal and viral kingdoms within the GLA still remain to be further investigated. Their manipulation, as for the bacterial component, could pave the way for new approaches in the management of several respiratory diseases such as acute infections, COPD, asthma, and/or CF.

WAF: Gut health is an important area of research for the foundation.

Gut Health and asthma, an interview with Rodney Dietert, PhD.

See also Dr. Dietert’s interview about the Gut and Lung connection.

Non-Eosinophilic Asthma (NEA)

Although non-eosinophilic asthma (NEA) is not the best known and most prevalent asthma phenotype, its importance cannot be underestimated. NEA is characterized by airway inflammation with the absence of eosinophils, subsequent to activation of non-predominant type 2 immunologic pathways. This phenotype, which possibly includes several not well-defined subphenotypes, is defined by an eosinophil count <2% in sputum. NEA has been associated with environmental and/or host factors, such as smoking cigarettes, pollution, work-related agents, infections, and obesity. These risk factors, alone or in conjunction, can activate specific cellular and molecular pathways leading to non-type 2 inflammation.

Note from the WAF: We wish to acknowledge and thank Darío Antolín-Amérigo, Javier Domínguez-Ortega,3,4 and Santiago Quirce Department of Allergy, Hospital General de Villalba, Madrid, Spain, for their contribution to Asthma education and research.

The most relevant clinical trait of NEA is its poor response to standard asthma treatments, especially to inhaled corticosteroids, leading to a higher severity of disease and to difficult-to-control asthma. Indeed, NEA constitutes about 50% of severe asthma cases. Since most current and forthcoming biologic therapies specifically target type 2 asthma phenotypes, such as uncontrolled severe eosinophilic or allergic asthma, there is a dramatic lack of effective treatments for uncontrolled non-type 2 asthma. Research efforts are now focusing on elucidating the phenotypes underlying the non-type 2 asthma, and several studies are being conducted with new drugs and biologics aiming to develop effective strategies for this type of asthma, and various immunologic pathways are being scrutinized to optimize efficacy and to abolish possible adverse effects.

Aspirin Exacerbated Respiratory Disease

What is aspirin-exacerbated respiratory disease (AERD)

Aspirin-exacerbated respiratory disease (AERD) is a clinical tetrad of nasal polyps, chronic hypertrophic eosinophilic sinusitis, asthma and sensitivity to any medication that inhibits cyclooxygenase-1 (COX-1) enzymes, namely aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) Ingestion of aspirin, and most NSAIDs, results in a spectrum of upper and/or lower respiratory reactions, to include rhinitis, conjunctivitis, laryngospasm and bronchospasm.1,2 AERD affects 0.3-0.9% of the general population, but the prevalence rises to 10-20% of asthmatics and up to 30-40% in those asthmatics with nasal polyposis.3-7 The average age of onset is 34 years in a US study and is thought to be acquired between teenage to middle adulthood years with no ethnic predilection and rare familial associations.3-7 AERD is more commonly reported in females (57% vs. 43%).

Note from the WAF editorial board:  The WAF would like to acknowledge and thank  Rachel U. Lee1 and Donald D. Stevenson, Division of Allergy, Asthma & Immunology, Naval Medical Center Portsmouth, Portsmouth, VA, USA. and the Division of Allergy, Asthma & Immunology, Scripps Clinic, San Diego, CA, USA for their continued support to Asthma education,.

Asthma’s Inner World – a patients journey of discovery

By Alan Gray

World Asthma Foundation (WAF) is supporting care of Asthma and asthmatics around the world through a new Severe Asthma Series focused on “Defeating Asthma” with the aim of shining a spotlight on a deeper understanding and getting to a cure.
I’m Alan Gray, the Director of the World Asthma Foundation (WAF) located in Adelaide, Australia. Today, I’m talking to Bill Cullifer, in Northern California, he’s the founder of the World Asthma Foundation (WAF) and a Severe Asthmatic. I’m hoping to spend some socially distanced time with Bill to get his perspective on why he chose to establish the WAF in 2003 and what he finds important about Severe Asthma. We’ll also cover what he’d like me to accomplish heading up the Severe Asthma project as the Director in Australia.

Backstory

Bill retired in 2013 from his Web professional career as a result of battling severe respiratory issues. Complicated by anaphylaxis to Aspirin and allergy to Aspergillus, a common and ubiquitous Fungi in the air we breathe every day. Bill has debilitating Severe Asthma. Severe Asthmatics are at high risk for COVID19, so reaching out to Bill today is timely since he’s isolated like many other Asthmatics. As a colleague and friend, Bill has asked me to lend my web publishing experience to share his 17-year personal journey of discovery with Asthmatics everywhere. I’m pleased to be a supporter of the Asthma community and to lend a hand.

Question and Answer session with Bill Cullifer, Severe Asthmatic and Founder WAF

Alan: Good morning Bill and thanks for making yourself available.

Bill: Good morning Alan and thanks for the kind words and the gracious support. Nice to hear from you today.

Alan: Bill, we’ve known each other for over 20 years dating back to your Web professional efforts to educate and certify Web workers around the globe. I appreciate you reaching out to me to support the Severe WAF and the Severe Asthma Series. To that end, I have a few questions for you.

Bill: Ok, great thanks Alan and thanks for your support.

Alan: Why does Severe Asthma matter to you?

Bill: Great question. Severe Asthma is a global health crisis that affects over 300 million people worldwide. Asthma has already reached Pandemic levels by definition standards published by the World Health Organization (WHO). For those that suffer, Severe Asthma can be very debilitating and can cause premature death. I know first hand because Severe Asthma has dogged me personally for the last 17 years. While inhalers can be effective treatment for some, many Severe Asthmatics require daily systemic steroids, expensive treatment options and physical therapy.

Asthma rates are just getting worse. The projected rate for Asthma tops 400 million worldwide in the middle part of this decade. This is unacceptable really. Despite significant advances in our understanding, Severe Asthma continues to wreak havoc on individuals and our global economy. Given the toll on individuals, the burden on society and the huge financial cost, we need an “all hands on deck” to turn this around. Asthma education and advocacy are an integral piece for solving this puzzling disease in my opinion.

Alan: What can we expect from the WAF Severe Asthma series?

Bill: For a number of Severe Asthmatics, getting to a definitive diagnosis, can take years. In fairness, Severe Asthma is a complex disease, it’s confusing and frustrating for clinicians alike as well.

The Severe Asthma Series is about my own personal journey of discovery. A research journey that’s still unfolding actually. With encouragement from family and friends to share my story with others, I’ve turned over my 17 binders of notes, assembled my documents and medical records. I hope others can benefit from my story.

Alan: Any key takeaways?

Bill: For starters, Asthma is way more complicated than experts first realized actually. Also, Asthma is not a single disease but rather a syndrome. That’s major progress because it’s not only descriptive, it’s the truth. I’ve struggled to understand this for decades. We can’t defeat what we don’t understand and I think that unlocking the mystery is part of the Asthma solution I’d say.

Alan: How are you now and how are you holding up with the global COVID19 pandemic?

Bill: Severe Asthmatics are at high risk for COVID19 according to health experts around the globe. Like many in the over 60 crowd with underlying health issues, I’m hunkering down. I’m trusting my own instincts and following health guidelines by avoiding outside contact by staying indoors and hopefully out of harm’s way. Severe Asthma and COVID19 are both as much mystifying as they are isolating. I empathize with Asthmatics everywhere. It’s really a tough and uncertain time. Playing it smart, I think we’ll get through this.

Alan: Why did you establish the World Asthma Foundation (WAF) and what do you hope to accomplish with the Severe Asthma Series?

Bill: Alan, It’s human nature to want to learn more when you or someone close to you is diagnosed with a potential life threatening illness. To help me improve my personal understanding and diagnosis, I created a simple website at http://worlsasthmafoundation.org in 2003 and registered the WAF on the web. More of a newsfeed really than a website, The goal was to harness and publish daily Asthma news from around the world and to automate the delivery to my email every 24 hours. Community forums were not as robust as they are today. Automation saved me time from manually searching for the daily news. I learn something new about Asthma every day. Way more informational than I ever gleaned from reading the pamphlets at the doctors office. Today, the WAF has evolved to include a lot more than just the news. Over 8k subscribers last I checked. A lot has changed since 2003. Advances in research and technology, along with a number of very passionate researchers is on the rise and its a good thing to be reporting on. Ideally, and if you’re willing, I’m hoping to leverage your web publishing background to provide timely and relevant Asthma information that will benefit those that suffer. Asthma education matters and my hunch is that my findings can go a long way in moving the needle to our collective understanding of Severe Asthma.

Alan: What would you like Asthmatics to know about this series?

Bill: Severe Asthmatics like myself have daily struggles trying to breathe and living to see another day. I’m hopeful that my journey of discovery of the past 17 years will improve the level of understanding for the Asthma community. Asthma for example, is driven by both genetics and environmental factors, We’ve known that for sometime now. But what does that mean exactly? It’s been my mission to unpack this mystery. The genes we inherit are important but what impact does the environment have on our dna? Activation of the immune system has plagued researchers for years and it would also be nice to unpack this mystery as well. To be clear, I’m not a physician, and this should not serve as medical advice. I’m just a regular guy with Severe Asthma that’s trying to figure Severe Asthma out like everyone else. Science is about unlocking the truth and the truth is, together Asthmatics can ultimately prevail in getting the answers to a multitude of questions. Leading to a cure would be fantastic.

Alan: What would you like me to do to help Bill?

Bill: Alan, you’re an experienced web publisher. I’d like you to publish my findings and journey of discovery – a patient perspective to support those that suffer and those that support them. Interview the experts too and support the community with their expertise too. You’re good at this and it will help a lot. I’d be greatly appreciative and I know others will as well.

Alan: Thanks Bill. I appreciate your support as well. Asthma is a worthy cause. Take care of yourself and stay safe!

Bill: Thanks and you as well.

Support the WAF to Defeat Asthma. Here are some specific ways to help:

* Become a subscriber. It’s free and easy
* Like us on Facebook
* Follow us On Twitter
* Subscribe to our RSS feed. Use the latest browsers (IE and FireFox) or one of these “top ten Windows and Mac feed readers” to automatically receive updates as new podcasts are available
* Link to us from your site. (https://worldasthmafoundation.org)
* Visit and support World Asthma Day
* Send a link to a friend. Share this resource with one of your friends, students or teachers.
* Become a volunteer and advocate for Asthma
* Bookmark our site. Add our link to your favorite social bookmarking site.